Аккумулятор разрядился в ноль, что делать

Зачем нужны тренировки

Не все до конца понимают, для чего проводится подобная тренировка старого или севшего автомобильного аккумулятора.

Можно выделить несколько основных причин:

  • желание отложить покупку новой дорогостоящей батареи;
  • увеличение срока службы используемой АКБ;
  • реанимация аккумулятора, о котором забыли и нашли его через долгое время;
  • восстановление характеристик уже давно эксплуатируемой батареи.

В некоторых случаях, когда батарея пролежала пару лет в гараже либо её просто забыли снять с машины, оставив на длительное хранение без скинутых клемм, удаётся восстановить АКБ, которая кажется уже приговорённой к утилизации.

Правильно проведённая тренировка старого автомобильного разряженного аккумулятора, когда выполняется заряд-разряд, позволяет сэкономить деньги автовладельцу. Плюс АКБ несколько восстановит свои характеристики, а потому двигатель будет запускаться легче даже при сильных морозах.

Что делать, если аккумулятор не заряжается

Если вышеперечисленные методы не помогли, то рекомендуем ознакомиться со следующими способами как оживить аккумулятор 18650.

С помощью специального зарядного устройства

Это действие осуществляется при помощи китайской копии зарядного устройства «IMAX B6» и мультиметра. Эта зарядка доступна в широкой продаже, и она отлично восстанавливает аккумулятор в домашних условиях.
Для начала необходимо проверить саму батарею, путем соединения к ней мультиметра и выставляя устройство в режим измерения напряжения. Если у аккумулятора глубокий разряд, мультиметр покажет низкие показателями U в милливольтах.

Суть метода заключается в том, чтобы измерение реального количества U в аккумуляторе «мешает» контроллер.
Есть два вывода, плюс и минус, которые идут непосредственно с батареи на контроллер. На выводах чаще всего напряжение составляет 2,6 В это достаточно небольшое значение.

Напряжение будет по немногу подниматься. Это значит, что восстановление li ion аккумулятора идёт успешно. Через какое-то время значение U дойдет до 3,2 вольт, и батарея начнет «раскачиваться». Позже её можно будет заряжать от «родной» зарядки.

С помощью резистора и «родного» ЗУ

Этот способ еще более проще осуществить, чем предыдущий. Здесь необходимо «минус» подзарядки подвести к «минусу» аккумулятора. А «плюс» вывести путем резистора на «плюс» батареи.
После этого следует подать питание и напряжение будет возрастать.
Его можно поднять до 3В, для достижения этого показателя, нужно процедуру провести в течении пятнадцати минут. Как только метод завершен, аккумулятор можно проверить на работоспособность.

С помощью вентилятора

Чтобы осуществить этот метод нам понадобится блок питания, в котором выходное напряжение было минимум 12В. «Минус» вентилятора следует подсоединить к «минусовом» разъему блока питания, а его «плюсовой» к плюсу и обязательно фиксировать вручную на аккумуляторе.
Когда мы включим устройство, вентилятор начнет работать. Это значит, что в батарее уже идёт ток. Процедуру не стоит долго продолжать, где-то через 30 секунд нужно выключить сеть. После такого восстановления напряжение обычно повышается до 3В.

Восстановление 18650 аккумуляторов при помощи подзарядки от другого аккумулятора

Существует способ как реанимировать литий-ионную батарею с помощью другого автомобильного аккумулятора. Для этого нам нужна любая другая батарея на 9 В, скотч, а также тонкий провод.
Метод осуществляется по следующим этапам:

  • Проводки требуется подвести к контактам батареи, которую мы хотим реанимировать. На каждый контакт провод должен быть отдельным.
  • Нельзя замыкать контакты «плюс» и «минус» лишь одним проводом. Из-за этого может произойти короткое замыкание, и оживить батарею будет нельзя.
  • Соединения нужно закрепить скотчем, на которой перед этим необходимо сделать метку маркером, какой провод с каким контактом будет соединён.
  • Провод от «плюса» девятивольтового аккумулятора следует соединить с «плюсом» восстанавливаемой батареи.
  • Минусовые контакты надо соединить по этому же методу.
  • Все контакты закрепляем изолентой, чтобы провода не отошли.
  • Ждём определенное время и следим за состоянием батареи, она должна минимально нагреться.
  • Когда аккумулятор станет тёплым, сразу же отсоединяем от АКБ батареи.
  • Проводим перезарядку.
  • Проверяем работу.

С помощью использования тренировочных циклов

Этот метод проводится для предотвращения сульфатации, а также для того чтобы определить емкости батареи. Такие циклы нужно проводить минимум один раз в год и процедура выполняется по следующим этапам:

  • Следует зарядить литий-ионный аккумулятор обычным током до того момента, пока он полностью не зарядится.
  • Выдерживаем ее четыре часа после того как прекратилось питания.
  • Корректируем плотность электролита.
  • Включаем заряд на 25-35 минут чтобы электролит был перемешенным.
  • Необходимо провести контрольную разрядку постоянным нормальным током десяти-часового режима и контролировать время полного разряда до того как напряжение спадет до 1,7 В на банку
  • Емкость батареи можно определить как уровень разрядного тока умноженный на время разряда.
  • После того, как контрольный разряд осуществлён необходимо сразу же полностью разрядить аккумулятор. Если получилось так, что емкость не заряжается аккумулятор 18650 скорее всего уже не починить.

Основные минусы данного метода:

  • Сокращается срок службы.
  • Долгое время восстановления литий-ионных аккумуляторов.
  • Огромные затраты энергии.
  • Маленькая эффективность способа.

Виды тяговых аккумуляторных батарей

Для лучшего понимания тяговые аккумуляторы можно классифицировать по их типам. Существуют:

  • свинцово-кислотные;
  • щелочные;
  • литий─ионные;
  • прочие.

Рассмотрим их подробнее.

Свинцово-кислотные

Можно выделить три разновидности свинцовых батарей.

  • WET. Традиционные с жидким электролитом.
  • AGM. Электролит содержится в стекловолокне.
  • GEL. Электролит находится в виде геля (химическое соединение серной кислоты и оксида кремния).

Аккумуляторные батареи свинцово-кислотного типа WET наименее приспособлены для использования в качестве тяговых. Однако есть ряд производителей, которые выпускают такие модели для использования на погрузчиках и другой складской технике на электротяге. Они также применяются в роли АКБ в системах резервного и аварийного питания, промышленном оборудовании и т. п. Хотя эти уже относятся к группе стационарных по своему назначению. Основное же назначение батарей WET – это стартерные аккумуляторы для автомобиля.

Технология производства тяговых свинцово-кислотных АКБ отличается от стартерных. Они выпускаются по панцирной технологии. Название пошло от панцирной сетки, которой окружён положительный электрод. Её назначение в следующем:

  • удержание материала электрода от разрушения;
  • предотвращение образования крупных кристаллов свинца в процессе заряда.

AGM и GEL

Аккумуляторные батареи AGM и GEL имеет смысл рассмотреть вместе, поскольку они имеют близкие эксплуатационные характеристики. Различия в устройстве связаны с тем, в каком состоянии находится электролит: в стекловолокне (AGM) и в виде геля (GEL).

Это как раз те АКБ, которые успешно работают в роли тяговых и стартерных. Они используются на автомобилях с системой «Старт-Стоп» и с большим числом потребителей тока на борту. Широко используются гелевые аккумуляторы в различных источниках бесперебойного питания, серверном и коммуникационном оборудовании. Легко и без последствий переносят глубокий разряд.

В роли тяговых они нашли широкое применение в морском и речном транспорте (троллинговые электромоторы на рыбацких лодках и катерах), а также мотоциклетной и садовой технике. Линейки таких АКБ в своём ассортименте имеет каждая уважающая себя компания-производитель аккумуляторов.

В складской технике также можно встретить AGM и GEL аккумуляторы, но там они не получили широкого распространения. Это объясняется высокой стоимостью. Для обеспечения питания электромобилей они также не подходят.

Щелочные

Это наиболее распространённый вид тяговых аккумуляторов. По своей конструкции они похожи на свинцово-кислотные тяговые батареи. Они поставляются в сборках из отдельных Ni-Cd или Ni-MH аккумуляторных элементов. Используются элементы ламельного типа. Номинальное напряжение полностью заряженного элемента около 1,45 вольта при разомкнутой цепи. Рабочее напряжение составляет 1,25 вольта. Соединяя их, получают необходимое напряжение на выходе.

Литиевые

Литиевые аккумуляторные батареи можно разделить на литий─ионные и литий─полимерные. В роли тяговых нашли применение некоторые разновидности литий─ионных АКБ. В частности, используются модели LiFePO4 и ряд других. Литиевые тяговые батареи постоянно совершенствуются для использования в электромобилях. Именно они стали использоваться для питания силовых агрегатов в электромобилях и автомобилях с гибридными двигателями.

Среди плюсов Li─Ion в роли тяговых батарей можно назвать следующие.

  • Высокая энергоёмкость. Отсюда небольшие габариты при высокой мощности.
  • Быстрый заряд.
  • Спокойно работают в режиме заряд-разряд. Отрицательно сказывается только полный разряд в ноль или излишний перезаряд, но эту проблему обычно решает защита.

К минусам можно отнести.

  • Высокая стоимость.
  • Запасы лития ограничены.
  • При работе используются дополнительные меры безопасности.

Ещё не так давно литий─ионные АКБ имели ряд ограничений для использования на электромобилях. Однако сейчас большинство этих проблем решено благодаря разработке новых модификаций этих батарей. И производители постепенно переходят на массовое производство.

Прочие

В роли тяговых на сегодняшний день используются только вышеперечисленные типы аккумуляторных батарей.

В Японии, например, работают над заменой лития натрием в Li─Ion аккумуляторах, поскольку последний более распространён в природе. Некоторое время назад было много шума по поводу графеновых аккумуляторов.  Однако пока нет коммерческих образцов и не налажено массовое производство.
 

Как восстановить литий ионный аккумулятор

На самом деле, есть множество способов восстановления li on аккумулятора, начиная от самых простых, которые можно совершить в домашних условиях до «профессиональных».

Как восстановить аккумулятор 18650 после глубокого разряда

Глубокий разряд батареи – это процесс обнаружения минимального заряда, после чего происходит блокировка электрической цепи при помощи специального контроллёра. Если не провести операцию по запуску, то аккумулятор и дальше будет падать, в итоге чего совсем перестанет держать заряд.

Специалисты говорят, что минимально низкий уровень заряда аккумулятора очень плохо влияет на состояние элемента питания. Даже после процедуры восстановления, скорее всего, будет наблюдаться частичная деградация и уменьшение ёмкости.
Если батарея совсем не хочет запускаться, то нужно выполнить следующие действия:

В первую очередь необходимо провести стандартную зарядку в течение получаса.
Если этого сделать не удаётся, то придётся прибегнуть к разборке корпуса, для того, чтобы получить доступ к клеммам.
Следует изолировать схему устройства, для этого отпаиваем аккумулятор от клемм.
Определение полярности клемм аккумулятора

Важно, то что из-за этого процесса батарея может выйти из строя.
Необходимо подать напряжение в пределах 4.2 Вольт. Важно, чтобы напряжение не было больше.

Если все процедуры выполнить правильно, то аккумулятор должен включиться и начать стабильно работать.
Что не стоит делать, если аккумулятор ушел в глубокий разряд?

  • Не нужно пытаться подключить аппарат к более мощной зарядке. Чаще всего из-за этой ошибки страдает контроллер аппарата.
  • Не стоит подсоединять зарядку напрямую к клеммам, потому что такой источник питание подаст большее напряжение, чем необходимо.
  • Если вы имеете зарядное устройство обладающее регулируемым напряжением, то не в коем случае нельзя его подключать к клеммам без определения полярности.
  • Если всё таки не получилось запустить аккумулятор, то лучше всего его заменить в сервисном центре.

О циклах заряда – разряда аккумулятора

А теперь о циклах заряда разряда и здесь также немало разногласий. Но Вам нужно знать лишь следующее, после 500 полных циклов заряда разряда от 100 до 0 % емкость аккумулятора снижается до 80% от максимальной. Это при номинальной температуре и токе заряда.

При повышенной температуре ну где то от 42С и выше градусов, количество циклов заряда разряда сокращается вдвое, так что главный враг аккумулятора это перегрев.

А вот если Вы будете не полностью заряжать и разряжать смартфон, то количество циклов заряда разряда увеличится значительно. Так при 70% разряде, количество циклов увеличивается вдвое, а при 50% разряде — втрое. Ну, при этом, соответственно, время эксплуатации смартфона у Вас уменьшается.

В связи с этим целесообразным считается заряд аккумулятора, не достигшего полного заряда и полного разряда. Ведь чем больше заряжена или разряжена батарея, тем больше ионов лития находится на одном из электродов, что приводит к сокращению срока службы аккумулятора.

Поэтому, лучше держать аккумулятор заряженным от 10 до 90% . Более частые подзарядки не рекомендуются по двум причинам. Во-первых, как показали последние исследования, частые цикли неполной зарядки разрядки приводят к возникновению отдельных микро эффектов памяти, которые затем суммируются. Если батарея не будет полностью заряжена, то на катоде останется некоторое число частиц, нарушается микроструктура электрода. А во-вторых, каждый подзаряд нагревает батарею, а это как мы знаем вредно.

По той же самой причине не рекомендуется использовать быстрые зарядки, ведь они нагревают аккумулятор. Хотя я не спорю, что быстрые зарядки очень удобные и быстро заряжают смартфон.

Tudor

Эта торговая марка получила известность в конце XIX века. Главным её продуктом стал усовершенствованный свинцово-кислотный аккумулятор. Сегодня бренд Tudor принадлежит корпорации Exide Technologies.

Ассортиментный ряд бренда отличается использованием наиболее современных технологических решений. К ним относятся технологии:

  • Ca/Ca — легирование свинцовых пластин кальцием (кальциевая технология), повышающее их прочность, улучшающее работоспособность АКБ, уменьшающее водопотребление;
  • 3DX — изготовление свинцовых решёток с алмазоподобной геометрией методом холодной перфорации, что увеличивает адгезию активной массы к пластине, удлиняет срок эксплуатации, улучшает электрические характеристики;
  • Carbon Boost — использование углеродных добавок в материале отрицательных пластин, что сокращает срок зарядки АКБ в 1,5 раза и другие.

Модели бренда объединены в серии, отличающиеся уровнем цен, электрической ёмкостью, пусковыми токами, скоростью перезарядки. Также их позиционирование определяется возможностью использования в современных городских автомобилях с большим числом дополнительных устройств, работающих как при включенном двигателе, так и во время стоянки.

  • Tudor Starter — бюджетная группа, в которую входит до десяти моделей ёмкостью от 55 до 90 А·ч. с прямой и обратной полярностью, пусковыми токами от 460 до 720 А. Напомним, прямая полярность — это когда плюсовой вывод находится слева, если смотреть на фасад с табличкой. Обратная — наоборот.
  • Tudor Technica — АКБ для автомобилей более высокого уровня. Они могут обслуживать дополнительные устройства типа климат-контроля, мощных аудиосистем и т. п. Пусковые токи холодной прокрутки — 200-850 А, ёмкость — от 32 до 110 А·ч. В эту группу входит около 40 моделей с прямой и обратной полярностью.
  • Tudor High-Tech — группа АКБ для дизельных внедорожников и автомобилей бизнес-класса. Их ёмкость — от 38 до 100 А·ч, пусковые токи — от 300 до 900 А. Всего в этой категории около 20 моделей с прямой и обратной полярностью.
  • Tudor Heavy Professional — группа АКБ, которые выпускаются для грузовых автомобилей и спецтехники. Пусковые токи — от 1000 до 1130 А, ёмкость — от 185 до 235 А·ч.
  • Tudor AGM Start-Stop — особая группа аккумуляторов, выполненных по технологии AGM. Их пластины окружены не жидкостью, а стекловолокном, пропитанным электролитом. Такая технология совместно с решениями Start-Stop существенно увеличивает пусковые токи, скорость зарядки, срок службы батареи, усиливает её стойкость к вибрации и коррозии.

АКБ последней категории стоят минимум в два раза больше ординарных аналогов. Они предназначены для мощных автомобилей с большим потреблением энергии и частым использованием стартера (Start-Stop). Такие АКБ устойчивы к глубокому разряду. Их ёмкость — от 50 до 105 А·ч, пусковые токи — от 680 до 950 А. Линейка состоит из шести моделей, все с обратной полярностью.

Все аккумуляторы Tudor — необслуживаемые. Их крышки герметичны, весь конденсат в АКБ с жидким электролитом возвращается обратно, поэтому его количество не уменьшается до конца эксплуатации. В батареях AGM уровень электролита как таковой вообще не контролируется. Заряжать все АКБ необходимо током силой в 1/10 ёмкости. Напряжение заряда — 14,4-14,8 В. Перезарядка (напряжение более 15 В) для таких АКБ губительна.

Почему не стоит доводить АКБ до состояния глубокого разряда

Разряд аккумуляторной батареи является вполне естественным и нормальным явлением. Ведь АКБ и созданы для того, чтобы накапливать энергию, отдавать её, а затем снова накапливать. И так циклично. То есть аккумуляторы являются многозарядными устройствами. Здесь не нужно менять АКБ всякий раз, когда она отдала заряд. Ведь она его восполняет.

Но конструкция современных аккумуляторов далека от совершенства. У неё есть ряд проблем и требований:

не допускается перезарядка, поскольку это провоцирует осыпание пластин;
крайне нежелательно довольно батарею до глубокого разряда;
всегда важно поддерживать правильную плотность электролита;
рабочая жидкость должна находиться на стабильном уровне;
избегать замыкания банок и пр.

То, сколько сможет ещё проработать батарея, если возник глубокий разряд автомобильного аккумулятора, во многом зависит от самой АКБ, её текущего состояния и оперативности реанимационных действий.

Прежде чем узнать, что делать в такой ситуации, необходимо уточнить причину такой высокой опасности глубокого (полного) разряда стартерной батареи.

В кислотных АКБ содержится электролит, обладающий определённой плотностью. Электролит представлен в виде смеси из серной кислоты и дистиллированной воды.

Когда батарея разряжается, кислота постепенно начинает оседать на положительных свинцовых пластинах в виде соли. И чем разряд сильнее, тем активнее и объёмнее оказываются эти отложения. Плотность падает, существенно отличаясь от нормы.

Глубокий разряд можно охарактеризовать как минимальный порог разряда АКБ, ниже которого опускаться уже попросту некуда. Если батарея посажена в ноль, внутри протекает химический процесс, стимулирующий оседание солей на поверхностях. Чтобы удалить отложения, необходимо при первой же возможности подключить АКБ к зарядному устройству. Или позволить начать заряжаться от генератора автомобиля.

Тем самым плотность нормализуется, кристаллы солей разрушаются, и работоспособность аккумулятора восстанавливается.

Казалось бы, при глубоком разряде можно просто подключить АКБ к зарядному устройству, и всё нормализуется. Это распространённое заблуждение.

То есть свинцовая пластина практически полностью покрывается твёрдым солевым слоем. А поскольку зарядка батареи происходит за счёт взаимодействия свинца и электролита, то в такой ситуации АКБ заряжаться уже не будет.

Накапливать заряд такой аккумулятор уже не способен.

Из-за этого, когда аккумулятор переживает порядка 10 полных разрядов, на 30% ёмкости уже рассчитывать не приходится. При таких потерях накопленного заряда не хватит, чтобы запустить двигатель.

Глубоким считается разряд до 10,5–11 В. Именно этот порог считается критическим, когда активно начинает протекать процесс сульфатации. То есть начинает появляться осадок в виде кристаллов солей.

Что происходит при разряде в зависимости от времени и при глубоком разряде вообще

Разряд и заряд АКБ можно охарактеризовать напряжением аккумулятора. Все привыкли считать, что на максимальном заряде этот параметр равен 12В, но это не так. Нормальным считается 12.7В. Показатель приобретает это значение при полном заряде.

Сильный разряд — это снижение напряжения до 10.5-11В. При таких показателях автомобиль не получится завести. Разряд в ноль характеризуется полным отсутствием напряжения.

Глубокая разрядка аккумулятора негативно сказывается на состоянии батареи. Во время разряда происходит поглощение серной кислоты из электролита. Во время этого процесса она оседает в виде соли на пластинах. Соответственно, что чем ниже становится напряжение в АКБ, тем сильнее откладывается соль. Плотность электролита сильно падает.

Глубокий разряд АКБ — это минимальный порог батареи. Дальше просто некуда разряжать. Чтобы минимизировать негативные последствия, требуется скорее зарядить батарею. Это поможет снять соли с пластин.

При заряде плотность повысится до нормального значения. Будет уже поглощаться дистиллят, а содержание кислоты возрастет.

Лучше внимательно следить за разрядом аккумулятора и стараться не опускать напряжение до 11 Вольт. Это минимум, при низких значениях начинается отложение солевого слоя.

Возможные причины и последствия

Причинами сильного разряда могут служить:

  • утечки тока;
  • некорректно работающий генератор;
  • длительная стоянка.

Также сильно разряжают АКБ и не выключенные приборы. Например, зачастую автомобилисты забывают выключить фары. За ночь батарея полностью разрядится.

Последствиями таких разрядов становятся отложение солей на пластинах, падение плотности электролита. Это, в свою очередь, приведет к выведению из строя устройства. Так что, глубокий разряд сильно негативно сказывается на свинцово кислотных батареях, а в частности с циклом съедает около 3 процентов емкости.

Можно ли восстановить

После глубокого разряда можно восстановить аккумулятор, если убрать налет соли с положительных пластин. Это можно сделать двумя способами:

  1. Если кристаллизация прошла по максимуму, очистить можно вручную. Это делается путем вытаскивания пластин и удаления соли с них. После нужно использовать новый электролит и произвести зарядку батареи. Этот способ очень сложный и требует максимальной аккуратности. Существует риск еще больше разрушить пластины.
  2. Можно использовать специальный десульфатор для пластин. Как правило, такая химическая жидкость моментально убирает слой соли на свинцовых пластинах, и аккумулятор начинает держать заряд.

Как определить, сколько времени проработает на одном заряде

Казалось бы, задача элементарная. Предположим, у нас 12-ти вольтовая батарея ёмкостью 60 А·ч и электромотор на 12 В мощностью 250 Вт. Рассчитываем ток, потребляемый мотором:

250 / 12 = 20,8 А

Теперь мы можем рассчитать время работы мотора от полностью заряженного аккумулятора:

60 / 20,8 = 2,88 ч или 2 часа 50 минут

Но это абсолютно неверно, поскольку количество энергии, которое может отдать аккумулятор, зависит от разрядного тока. Иными словами, ёмкость батареи зависит от тока разряда. Именно поэтому в характеристиках тяговых аккумуляторов указывается номинальная ёмкость при определённом времени разряда. Обычно это 5, 10, 20 или 100 часов. Обозначается этот параметр как С5, С10, С20, С100 соответственно.

Рассчитаем ток, протекающий через нагрузку при 20-ти часовом, к примеру, разряде:

I20  = E20 [А/час] / 20

Значит ли это, что при 15-минутном (1/4 часа) разряде ток будет равен E20 х 4? Нет, поскольку ток разряда и время разряда свинцового аккумулятора не пропорциональны друг другу. При 15-минутном разряде ёмкость свинцового аккумулятора обычно составляет чуть менее половины номинальной ёмкости.

Для того чтобы рассчитать ёмкость аккумулятора для произвольного тока разряда, необходимо воспользоваться законом Пейкерта, который установил, что ток и время разряда имеют степенную зависимость:

Ip * T = const

Здесь p – число Пейкерта – показатель степени, постоянный для данного аккумулятора или типа аккумуляторов. Формула Пейкерта действует и для современных герметичных свинцовых кислотных аккумуляторов. Для свинцовых аккумуляторов число Пейкерта лежит в диапазоне от 1,15 до 1,35. Величину константы const можно определить по номинальной ёмкости аккумулятора. После нескольких преобразований получим формулу для ёмкости аккумулятора E при произвольном токе разряда I:

Е = Eн * (Iн / I)p-1

Здесь Eн – номинальная ёмкость аккумулятора, а Iн – ток разряда, при котором задана номинальная ёмкость (обычно ток 20-часового или 10-часового разряда). Рассчитав ёмкость батареи для требуемого тока разряда, мы можем вычислить время работы мотора, разделив полученное значение ёмкости на ток разряда.


К этим батареям производитель приложил таблицы отношений времени работы к разрядному току

Технология производства кальциевых АКБ

Технологический процесс изготовления аккумуляторов с добавлением кальция существенно отличается от методики производства классических сурьмянистых батарей.

Пластины последних изготавливаются методом литья. Перенос такой технологии для производства свинцово-кальциевых решёток потерпел полное фиаско: оказалось, кальций в этом случае просто выгорает.

Поэтому основа пластин, её решётка, изготавливается посредством штамповки. Технология процесса заключается в следующем: сначала изготавливается сплав свинца с кальцием в необходимой пропорции в виде сплошной ленты, которая впоследствии подвергается перфорации. Применение такого способа позволило получить пластины с более сложной пространственной структурой, которая оказалась эффективнее традиционной. При этом внешняя рамка свинцово-кальциевой пластины в процессе штамповки сохраняется.

На данный момент кальциевым батареям не удалось вытеснить сурьмянистые – основным препятствием является сложность технологии их изготовления, что непосредственно сказывается на стоимости кальциевых автоаккумуляторов. Так что в продаже сегодня можно найти АКБ обеих типов, вдобавок появились гибридные батареи, представляющие собой нечто среднее между сурьмянистыми и кальциевыми аккумуляторами.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий