Камера сгорания

Как происходит воздействие?

Так на что же оказывает влияние степень сжатия? Здесь стоит учитывать то количество работы, которое производит силовой агрегат. И чем выше этот параметр, тем больше энергии будет выделяться в ходе сгорания топливовоздушной смеси. Соответственно, повышается и мощность двигателя.

По этой причине большинство производителей старается увеличить силовые показатели мотора за счет одной эффективной методики. К ней стали прибегать еще с конца прошлого столетия. Вместо того чтобы двигаться в направлении увеличения объема цилиндров и камеры сгорания, специалисты, а они уж точно знают, какая разница между компрессией и степенью сжатия, стремятся повысить именно последний показатель.

Однако здесь имеются ограничения. Рабочую смесь нельзя сжимать бесконечно долго — по достижении определенной величины она детонирует, то есть взрывается. В то же время это касается только двигателей, работающих на бензине. Дизельные силовые агрегаты лишены риска детонации. Собственно, этим и объясняется их более высокая степень сжатия.

И, чтобы избежать столь разрушительного воздействия, ведь детонация для двигателя губительна, повышается октановое число бензина. А это, в свою очередь, увеличивает стоимость топлива. Ко всему прочему те добавки, которые служат этой цели, приводят к ухудшению экологических параметров мотора.

Надёжный котёл отопления – залог тепла и комфорта в доме

Каждый потребитель решает данную проблему по-своему, но одно можно с уверенностью сказать: с морально устаревшим котлом все мероприятия по энергосбережению не дадут ощутимого эффекта. Надёжный котёл, независимо от используемого топлива, — сердце любой системы отопления. Именно от его работы зависит тепло в доме, которое нам так необходимо в холодное время года. Но чтобы стоимость тепла не разоряла семейный бюджет, старый котёл необходимо заменить новым, современным и экономичным.
Ассортимент котлов необычайно велик, а потребитель может выбрать модель, рассчитанную как для отопления частного дома, так и для организации автономного отопления в квартире.

Камера — сгорание — двигатель

Камера сгорания двигателя — прямоточная кольцевого типа, состоит из следующих основных узлов: наружного и внутреннего корпусов, жаровой части с 32 горелками и двух воспламенителей.

Камеры сгорания двигателей с подвесными клапанами по сравнению с камерами сгорания двигателей с боковыми клапанами и двигателей со смешанным расположением клапанов обладают рядом преимуществ. Эти камеры имеют компактную форму, благодаря чему их относительная поверхность, а следовательно, и потери на охлаждение получаются меньшими, чем в камерах с боковым и смешанным расположением клапанов. Благодаря меньшим сопротивлениям при всасывании ( отсутствие резких поворотов всасываемого потока и относительно слабые его удары о днище поршня, меньшие вихри и меньшие потери на трение смеси о стенки камеры) коэффициент наполнения r v двигателей с подвесными клапанами выше, чем двигателей с боковыми клапанами.

Камеры сгорания двигателей с подвесными клапанами допускают более высокие степени сжатия, что позволяет повысить литровую мощность и экономичность двигателя. Двигатели западноевропейских автомобилей, работающие на бензинах с октановым числом 75 — 85, характеризуются менее высокими степенями сжатия ( 6 5 — 8 5), чем американские двигатели.

Камера сгорания двигателя — прямоточная кольцевого типа, состоит из следующих основных узлов: наружного и внутреннего корпусов, жаровой части с 32 горелками и двух воспламенителей.

Камеры сгорания двигателей с подвесными клапанами допускают более высокие степени сжатия, что позволяет повысить литровую мощность и экономичность двигателя.

Камера сгорания двигателя имеет наружное охлаждение горючим. Система охлаждения устроена по принципу двух ходов, в соответствии с которым охладитель проходит по одной трубке и возвращается обратно по соседней. Существуют конструкции, в которых используется пористо-регенеративная система, включающая в себя пористую вставку, расположенную от форсуночной головки до линии несколько ниже критического сечения, и трубки регеративного охлаждения.

Камера сгорания двигателя короткая, кольцевого типа, спроектирована специально для работы при большом давлении газа. Она работает бездымно с высокой полнотой сгорания, что достигнуто с помощью хорошего перемешивания топлива и воздуха непосредственно за форсунками и применения завихрителя с увеличенным расходом воздуха через первичную зону. Кроме того, перед фронтовым устройством камеры установлен разделитель потока воздуха, гарантирующий распределение воздуха по наружному и внутреннему кольцевым каналам камеры.

Камера сгорания двигателя — кольцевая, с форсунками испарительного типа, бездымная. В задней части внутреннего корпуса расположен роликовый подшипник турбины высокого давления.

Камера сгорания двигателя — кольцевая, противоточная, с пневматическими форсунками, имеет высокую полноту сгорания в расчетной точке работы двигателя. Камера обеспечивает низкий уровень выделения загрязняющих веществ, работая на обедненной топливовоздушгюй смеси в первичной зоне.

Камера сгорания двигателя — кольцевого типа, очень короткая, с оригинальным смесеобразующим устройством. В этом устройстве топливо через 20 трубок подается в небольшие смесители вихревого типа, где оно предварительно смешивается с поступающим воздухом. Такая конструкция обеспечивает хорошее смешение и полное сгорание топлива на длине камеры менее 255 мм, причем в зоне длиной приблизительно 50 мм происходит смешение, а в остальной части — горение.

Камера сгорания двигателя — прямоточная кольцевого типа, состоит из следующих основных узлов: наружного и внутреннего корпусов, жаровой части с 32 горелками и двух воспламенителей.

Камера сгорания двигателя кольцевого типа имеет внутреннее пленочное и внешнее конвективное охлаждение. Для получения расчетного поля температур на выходе из камеры применены высокоэффективный диффузор за компрессором и относительно большое число ( тридцать) топливных форсунок.

Конструкция камеры сгорания двигателя существенно влияет на ег о работу по циклу Дизеля — Отто на газе. Наилучшие результаты получаются у однокамерных дизелей, наихудшие-у двигателей с разделенной камерой сгорания и другими теплоаккумулирующими и вихревыми приспособлениями.

Охлаждение камер сгорания двигателей, особенно форсированных, как правило, выполняется жидкостным.

Отсек камер сгорания двигателя газовой турбины включает: сборник камеры сгорания; пламенные трубы; переходные патрубки в сборе; топливные форсунки; запальные свечи; трансформаторы запала; индикаторы пламени; пламеперебросные патрубки; различные элементы материального обеспечения и прокладки.

Неразделенная камера сгорания

Двигатели с непосредственным впрыском топлива (рис. 1) имеют более высокий КПД и работают экономичнее, чем двигатели с разделенными камерами, поэтому они используются на всех грузовых автомобилях и на большинстве новых легковых автомобилей.

Рис.11. Многострунный распылитель2. ‘ / образная выемка в поршне3. Штифтовая свеча накаливания

При непосредственном впрыске топливо сразу попадает в камеру сгорания 1 с ш-образной выемкой 2, находящейся в поршне, поэтому распылнвание, нагрев, испарение и смешивание топлива с воздухом должны быстро следовать друг за другом. При этом предъявляются высокие требования к подаче не только топлива, но и воздуха. Во время тактов впуска и сжатия в цилиндре благодаря специальной конструкции впускного канала в головке блока цилиндров возникает воздушный вихрь. Форма камеры сгорания также способствует вихревому движению воздуха в конце хода сжатия (т. е. к началу впрыскивания). Из различных видов выемок в поршне, образующих камеру сгорания, в разное время применявшихся при создании дизелей, в настоящее время широкое применение нашла ц-образная выемка в поршне. Топливо должно вводи 1Ы.И и камеру сгорания таким образом, чтобы, равномерно распределяясь по объему камеры, оно могло быстро перемешиваться с воздухом. Для этого, в отличие от дизеля с разделенными камерами сгорания, где используется форсунка со штифтовым распылителем, при непосредственном впрыске топлива применяется форсунка с многоструйным распылителем 1. Распространение его топливных факелов должно быть оптимизировано и согласовано с параметрами камеры сгорания. Давление впрыскивания при непосредственной подаче топлива очень высокое (до 2000 бар).На практике при непосредственном впрыске применяются два способа интенсификации смесеобразования:• за счет целенаправленного движения воздуха;• за счет впрыска топлива — без использования движения воздуха.

Во втором случае отсутствуют затраты энергии на завихрение воздуха на впуске, что уменьшает потери на газообмен и улучшает наполнение цилиндра. Использование этого способа, однако, предъявляет повышенные требовании к расположению и количеству отверстии в распылителе форсунки, а также к тонкости распыливання топлива, что определяется диаметром отверстии распылителя. Кроме того, для достижения малой продолжительности впрыскивания и хорошего распыликания топлива необходимо очень высокое давление впрыска.

Отличия котлов с закрытой камерой сгорания и наддувной горелкой

Это более современные и технологичные, в большинстве случаев настенные котлы, стоимость которых на 10-30% выше абсолютно идентичных атмосферных аналогов. Закрытая камера сгорания предполагает изолированную зону горения, воздух в которую нагнетается вентилятором турбонаддува (турбиной). Скорость вращения вентилятора определяется автоматикой, в зависимости от количества сжигаемого топлива. Такой принцип работы позволяет достичь наиболее полного сжигания газа и меньших теплопотерь через конструкцию котла, что отражается на экономичности и КПД.

Основное отличие закрытой камеры от открытой в том, что воздух для сжигания газа забирается из улицы, на улицу отводятся и продукты сгорания. Осуществляется это через коаксиальный (боковой, двухтрубный) дымоход, в котором внутренняя труба служит для отвода дыма, а пространство между внутренней и внешней трубой – для забора воздуха. Поэтому такие котлы могут устанавливаться в любом соответствующем требованиям помещении, например, на кухне.

Схематическое изображение коаксиального дымохода.

Однако ощутимым недостатком такой конструкции является ее энергозависимость, т.е. работа от электросети. В среднем газовые котлы потребляют от 40 до 80 кВт электроэнергии в месяц отопительного сезона, при чем при любых, даже краткосрочных, сбоях в электроснабжении, горение прекращается. Решить проблему перебоев можно с помощью генератора.

Итоговые преимущества и недостатки

Если анализировать абсолютно все особенности котлов с закрытой камерой сгорания, выбор не так однозначен. В сравнении с более простыми атмосферниками они имеют как достаточно много преимуществ, так и немало недостатков.

Преимущества Недостатки
Более высокие в сравнение с атмосферными моделями характеристики: теплопроизводительность, КПД, меньший расход Более высокая стоимость, разница с атмосферными аналогами обычно в пределах 10-30%
Стабильная постоянная тяга, отсутствие обратной тяги (задувания ветром) Необходимость в более тщательном обслуживании
Более компактный коаксиальный дымоход, его монтаж гораздо проще, чем в случае с традиционным вертикальным Теоретически, виду наличия большего количества модулей, такие котлы менее надежны. На практике разница в количестве сервисных обращений практически не видна, поскольку срок службы турбины и соответствующей автоматики гораздо выше наименее ресурсного элемента – теплообменника
Возможность установки в любом соответствующем требованиям помещении, нет необходимости в выделении помещения под котельную Существует вероятность обледенения дымохода при температуре -15°C и ниже в виду замерзания на оголовье дымохода конденсата. Может привести к срабатыванию защитных механизмов и затуханию
Отсутствие серьезных требований к вентиляции Не столь ощутимая экономичность покрывается расходами на электроэнергию
Более высокая экологичность выбросов Вращение турбины создает дополнительный шум, хотя, согласно отзывам владельцев, он редко доставляет ощутимый дискомфорт

Компаундный паровой двигатель

Упрощённая схема паровой компаунд-машины тройного расширения:

Пар высокого давления (красный цвет) от котла проходит через двигатель, выходя в конденсатор при низком давлении (голубой цвет).

Большим минусом компаунд-машины, который выявило применение на паровозах, является невозможность трогания, если поршень в цилиндре высокого давления остановился в мертвой точке. Чтобы преодолеть этот недостаток паровозы с компаундной паровой машиной получили сложные приборы трогания, подающие кратковременно свежий пар сразу в два цилиндра.

На паровозах использовалось несколько вариантов компаундов:

  • цилиндры высокого и низкого давления располагаются параллельно один под другим снаружи рамы и работают на общий ползун. Данную схему имели паровозы американской постройки серий «B» и «X»;
  • цилиндры располагаются последовательно на общем длинном штоке (тандем-машина). По такой схеме строились российские паровозы серий «Р» и «П»;
  • Система де Глена — дополнительные цилиндры располагаются внутри рамы и работают на коленчатую ось. По данной схеме выпускались паровозы серии «У», а также опытный чехословацкий паровоз «18-01». В поздних сериях паровозов компаунд-машины не применялись из-за присущих им недостатков, добиваясь экономичности за счет перегрева пара.

Существенный вклад в изучение и применение паровой компаунд-машины на паровозах внёс российский инженер Александр Парфеньевич Бородин.

Типы

Устройство камер сгорания для газотурбинного двигателя, смотря по оси, через выхлоп. Синий цвет указывает путь охлаждающего потока, оранжевый указывает путь потока продуктов сгорания.

Жестяная банка

Камеры сгорания баллончиков представляют собой автономные цилиндрические камеры сгорания. Каждая «канистра» имеет свой топливный инжектор, воспламенитель, гильзу и кожух. Первичный воздух из компрессора направляется в каждую канистру, где он замедляется, смешивается с топливом и затем воспламеняется. Вторичный воздух также поступает из компрессора, где он подается за пределы гильзы (внутри которой происходит горение). Затем вторичный воздух подается, обычно через прорези в гильзе, в зону горения для охлаждения гильзы посредством тонкопленочного охлаждения.

В большинстве случаев вокруг центральной оси двигателя расположено несколько баков, и их общий выхлоп подается на турбину (турбины). Камеры сгорания баночного типа наиболее широко использовались в первых газотурбинных двигателях из-за простоты их проектирования и тестирования (можно тестировать одну банку, а не всю систему). Камеры сгорания баночного типа просты в обслуживании, поскольку необходимо снимать только одну банку, а не всю камеру сгорания. В большинстве современных газотурбинных двигателей (особенно для самолетов) не используются камеры сгорания, поскольку они часто весят больше, чем альтернативы. Кроме того, перепад давления в баллоне обычно выше, чем в других камерах сгорания (порядка 7%). Большинство современных двигателей, в которых используются камеры сгорания, представляют собой турбовальные двигатели с центробежными компрессорами .

Канюльный

Канальная камера сгорания для газотурбинного двигателя, ось обзора на выхлопе

Следующий тип камеры сгорания — канальная камера сгорания; этот термин является чем-то вроде «кольцевой банки». Подобно камере сгорания баночного типа, камеры сгорания с кольцевым кольцом имеют дискретные зоны сгорания, содержащиеся в отдельных вкладышах с собственными топливными форсунками. В отличие от камеры сгорания, все зоны горения имеют общий кольцевой (кольцевой) корпус. Каждая зона горения больше не должна служить сосудом высокого давления. Зоны горения также могут «сообщаться» друг с другом через отверстия в гильзе или соединительные трубки, которые позволяют некоторому количеству воздуха проходить по окружности. Выходящий поток из канальной камеры сгорания обычно имеет более однородный температурный профиль, что лучше для турбинной секции. Это также устраняет необходимость в каждой камере иметь собственный воспламенитель. Как только огонь загорится в одной или двух банках, он может легко перекинуться на другие и зажечь их. Этот тип камеры сгорания также легче, чем тип камеры сгорания, и имеет меньший перепад давления (порядка 6%). Однако трубчатую камеру сгорания труднее обслуживать, чем баночную камеру сгорания. Примеры газотурбинных двигателей , использующих в камеру сгорания канюли включают General Electric J79 турбореактивный двигатель и Pratt & Уитни JT8D и Rolls-Royce Tay турбовентиляторных .

Кольцевой

Кольцевая камера сгорания газотурбинного двигателя, ось при взгляде через выхлоп. Маленькие оранжевые кружки — форсунки для впрыска топлива.

Последний и наиболее часто используемый тип камеры сгорания — это полностью кольцевая камера сгорания. Кольцевые камеры сгорания избавляются от отдельных зон горения и просто имеют сплошную футеровку и кожух в кольце (кольцевом пространстве). У кольцевых камер сгорания есть много преимуществ, включая более равномерное сгорание, меньший размер (следовательно, меньший вес) и меньшую площадь поверхности. Кроме того, кольцевые камеры сгорания имеют тенденцию к очень равномерной температуре на выходе. У них также самый низкий перепад давления из трех конструкций (порядка 5%). Кольцевая конструкция также проще, хотя для испытаний обычно требуется полноразмерный испытательный стенд. Двигатель, в котором используется кольцевая камера сгорания, называется CFM International CFM56 . Почти во всех современных газотурбинных двигателях используются кольцевые камеры сгорания; аналогично, большинство исследований и разработок камер сгорания сосредоточено на улучшении этого типа.

Двойная кольцевая камера сгорания

ГПД

Схема, иллюстрирующая прямоточный воздушно-реактивный двигатель

Обратите внимание на изолирующую секцию между впускным патрубком компрессора и камерой сгорания. (Иллюстрация из Летного эксперимента Hy-V Scramjet .)

ГПВРД ( сверхзвуковой сгорания ПВРД ) двигатели представляют собой совершенно другую ситуацию для камеры сгорания по сравнению с обычными газотурбинных двигателей (гиперзвуковые реактивные двигатели не являются газовые турбины, так как они обычно не имеют мало или нет движущихся частей). Хотя камеры сгорания с ГПВРД могут физически сильно отличаться от обычных камер сгорания, они сталкиваются со многими из тех же конструктивных проблем, как смешивание топлива и удержание пламени. Однако, как следует из названия, ГПВРД должна решать эти проблемы в условиях сверхзвукового потока. Например, для ГПВРД, летящего со скоростью 5 Маха , поток воздуха, входящий в камеру сгорания, будет номинально составлять 2 Маха. Одна из основных проблем в ГПВРД — предотвращение распространения ударных волн, генерируемых камерой сгорания, вверх по потоку во входное отверстие. Если это произойдет, двигатель может отключиться , что приведет к потере тяги и другим проблемам. Для предотвращения этого в ГПВРД обычно имеется изолирующая секция (см. Изображение) непосредственно перед зоной сгорания.

Камера — сгорание — дизельный двигатель

Камеры сгорания дизельных двигателей, используемых наземными транспортными средствами, в основном, располагаются в поршне. Впускной канал создает необходимую закрутку воздушного потока для улучшения процессов смесеобразования и сгорания свежего заряда. В случае перехода на газовое моторное топливо, как правило, не имеется технологических возможностей изменения геометрии проточной части впускных органов, и повлиять на характер движения свежего заряда в цилиндре двигателя можно только подбором соответствующей камеры сгорания.

Камеры сгорания дизельных двигателей.

Камеры сгорания дизельных двигателей бывают неразделенного и разделенного типа.

Штатная камера сгорания дизельного двигателя, имея малый объем и обеспечивающее, соответственно, большую степень сжатия, не гарантирует использовать в качестве топлива природный газ, поскольку не обеспечивает бездетонационную работу во всем диапазоне скоростных и нагрузочных режимов. Изменяя геометрию камеры сгорания, необходимо учитывать, что в газовом двигателе с искровым воспламенением значительное влияние на экологические и экономические показатели оказывает уровень турбулизации свежего заряда в цилиндре до воспламенения и в течение процесса сгорания.

Штатная камера сгорания дизельного двигателя, имея малый объем и, соответственно, большую степень сжатия, не позволяет использовать в качестве топлива природный газ, поскольку не обеспечивает бездетонационную работу во всем диапазоне скоростных и нагрузочных режимов. Изменяя геометрию камеры сгорания, необходимо учитывать, кроме того, тот факт, что в газовом двигателе с искровым воспламенением значительное влияние на экологические и экономические показатели оказывает уровень турбулизации свежего заряда в цилиндре до воспламенения и в течение процесса сгорания.

Камера сгорания дизельных двигателей второго типа состоит из основной и дополнительной камер, В конце такта сжатия топливо впрыскивается через форсунку в дополнительную камеру, где оно частично сгорает, после чего продукты сгорания и еще не сгоревшее топливо перетекают в основную камеру, где и завершается процесс горения. Хорошее перемешивание топлива с воздухом и полное сгорание полученной смеси у двигателей этого типа достигаются благодаря перетеканию с большой скоростью газов через канал, соединяющий обе части камеры сгорания.

Форму камеры сгорания дизельного двигателя в основном определяет примененный способ смесеобразования. Камеры сгорания дизельных двигателей подразделяются на разделенные и неразделенные.

В камере сгорания дизельного двигателя смесь гетерогенна. Таким образом, характер смесеобразования, предпламенных превращений, воспламенения и горения в дизельном двигателе предопределяет значительно большие размеры образования сажи по сравнению с бензиновыми двигателями.

Индикаторная диаграмма дизельного двигателя ( пояснения в тексте.

Топливовоздушная смесь в камере сгорания дизельного двигателя никогда не бывает однородной по температуре, поэтому развитие предпламенных реакций всегда протекает неодинаково в отдельных ее частях.

Очень опасным является попадание значительного количества масла в камеру сгорания дизельного двигателя. В этом случае выключение подачи топлива насосом не прекращает нарастания оборотов, так как топливом служит сгорающее масло и двигатель трудно остановить сразу. Поэтому необходимо прежде всего нагрузить двигатель вплоть до стопорения, снизить давление сжатия в цилиндрах и выключить подачу топлива.

На рис. 55 показана зависимость степени сжатия в камере сгорания дизельного двигателя на уровень цетанового числа применяемого топлива.

Форсунки предназначены для высокодисперсного распыла и равномерной подачи топлива в камеру сгорания дизельного двигателя.

Форму камеры сгорания дизельного двигателя в основном определяет примененный способ смесеобразования. Камеры сгорания дизельных двигателей подразделяются на разделенные и неразделенные.

Сила тока прямо пропорциональна количеству отложившейся сажи. Так как условия горения топлива на лабораторной установке отличаются от условий горения в камере сгорания дизельного двигателя, прямой надежной зависимости между результатами, полученными по методу Факел и в стендовых испытаниях, нет, хотя в некоторых случаях корреляция наблюдается.

КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.

Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).

Рис. 1.2. Двигатель со снятой головкой блока цилиндров.

Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.

Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).

Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.

Рис. 1.3. Поршень с шатуном.

На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).

Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.

Примечание.

Распределительный вал двигателя приводится в действие коленчатым валом.

Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).

При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.

Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.

Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.

По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.

Основные элементы камеры сгорания ГТД ДН80

Кожух наружный

Кожух наружный выполнен в виде цилиндра 2 (рис. 31) с фланцами 1,5 на торцах. На кожухе камеры сгорания имеются бобышки 8 для крепления воспламенителей, в нижней части кожуха со стороны турбины на бобышках 6 установлены заглушки, четыре бобышки 9, для крепления гребенок полного напора при снятии полных характеристик двигателя, шестнадцати бобышек 4 для осмотра жаровых труб и горелочного устройства, бобышек 7 для крепления обвязки.

Кожух

Кожух 16 (рис.29) выполняет роль экрана и формирует необходимое поле скоростей воздушного потока. Состоит из тонкостенной оболочки и двух фланцев. Передним фланцем, кожух крепится к корпусу силовому КВД 1, а задним опирается на наружную стенку диффузора 15.

На оболочке выполнены карманы для прохода труб коммуникаций задней опоры, расположенной под камерой сгорания.

Трубы жаровые

Трубы жаровые являются основным элементом камеры сгорания и предназначены для сжигания перемешенной газовоздушной смеси (подготовки рабочего тела).

Классификация камер сгорания ГТУ, основные требования к ним

Камера сгорания(КС) – один из самых ответственных и теплонапряженных узлов ГТУ.

В КС совершается процесс подвода тепла к рабочему телу в результате протекания реакции горения топливного газа.

Классификация:

По назначению: основные, резервные, промежуточного подогрева

По принципу действия: переодического и неприрывного действия

По движению рабочего тела: прямоточные и противоточные

По компановки: выносные и встроенные

Конструктивные особенности корпуса и жаровой трубы: трубчатые, кольцевые, трубчато-кольцевые

Требования

· Высокая устойчивость горения во всем диапазоне эксплуатационных режимов работы двигателя без срывов, опасных пульсаций и затухания пламени

· Максимально возможная полнота сгорания (экономичность процесса сгорания)

· Малые габаритные размеры и небольшой вес

· Оптимальный закон распределения температуры газов на выходе из КС во избежание местных перегревов и повреждений сопел и лопаток.

Камера сгорания ГТУ (КС) –

это устройство, предназначенное для сжигания топлива и повышения энергии рабочего тела с целью использования ее в проточной части турбины.


На рис 4.1 приведена схема камеры сгорания ГТУ. Поток воздуха после компрессора, поступающий в КС, разделяется на первичный воздух GВ1 и вторичный – GВ2. Первичный воздух, подаваемый в количестве не менее стехиометрического, служит для полного сгорания топлива, а вторичный – для снижения температуры про­дуктов сгорания до требуемого уровня. Весь объем камеры сгорания делится на зоны горения и смешения. Рис. 4.1 Конструкция камеры сгорания. Воздухонаправляющее устройство (регистр) I служит для распределения и турбулизации первичного воздуха с целью улучше­ния смесеобразования для создания условий устойчивого процесса горения. Запальное устройство 2 служит для зажигания топлива в ка­мере сгорания в момент пуска. Горелочное устройство 3 предназначено для подачи топлива в КС и равномерного распределения по объему зоны горения. Пламенная (жаровая) труба 4 служит для ограничения огне­вого пространства и восприятия тепловых нагрузок. Силовой корпус 5 воспринимает нагрузки внутреннего давле­ния в камере сгорания. Смесители 6 перемешивают вторичный воздух с продуктами сго­рания с целью получения на выходе заданного температурного по­ля. Устойчивое горение топлива в КС обеспечивается следующими факторами: 1) подачей воздуха в количестве, необходимом для создания смеси нужного состава; 2) созданием нужного температурного режима; 3) наличием зоны стабилизации фронта пла­мени. Для обеспечения необходимого уровня температур и поля скоростей организуется зона обратных токов. 4.2.1. Требования к камерам сгорания и их характеристики Камеры сгорания ГТУ работают в широком диапазоне нагрузок. Они должны иметь малые габариты, массу, быть работоспособным при сжигании различных видов топлива. Кроме того, КС должны обеспечить допустимый уровень вредных выбросов с продуктами сгорания (окислов азота, серы). Особые требования к КС предъяв­лялся с точки зрения эксплуатационной надежности, так как они находятся в тяжелых температурных условиях. Кроме того, камеры сгорания должны иметь: высокий коэффициент полноты сгорания; малые потери давления; малые габариты, т.е. большую теплонапряженность; заданное поле температур; быстрый и надежный пуск; достаточно большой ресурс; достаточное удобство монтажа и профилактического обслуживания.

Снижение выбросов экологически вредных веществ в выхлопных газах гту

Камеры сгорания постоянного объема

Камеры сгорания постоянного объема (CVCC) — это исследовательские устройства, которые обычно оснащены свечами зажигания, инжекторами, линиями впуска и выпуска топлива / воздуха, датчиками давления, термопарами и т. Д. В зависимости от применения они могут быть снабжены оптическим доступом или без него. с помощью кварцевых окон. Камеры сгорания постоянного объема широко используются с целью изучения широкого спектра фундаментальных аспектов науки о горении. Основные характеристики явлений горения как пламя предварительно перемешанной смеси , зажигание, самовоспламенение, ламинарная скорость горения , скорость пламени , диффузионные пламена, спреи, производство выбросов, топливо и сгорание характеристики и химическая кинетика могут быть исследованы с помощью CVCCs.

Ссылки

Ноты
Библиография
  • Хендерсон, Роберт Э .; Блазовски, Уильям С. (1989). «Глава 2: Технология сжигания турбодвигательных установок». В Оутс, Гордон С. (ред.). Технология и конструкция силовых установок самолетов . Образовательная серия AIAA. Вашингтон, округ Колумбия: Американский институт аэронавтики и астронавтики. ISBN 0-930403-24-X.
  • Мэттингли, Джек Д .; Heiser, Уильям Х .; Пратт, Дэвид Т. (2002). «Глава 9: Конструкция компонентов двигателя: Системы сгорания». Конструкция авиационного двигателя . Образовательная серия AIAA (2-е изд.). Рестон, Вирджиния: Американский институт аэронавтики и астронавтики. ISBN 1-56347-538-3.

Мэттингли, Джек Д. (2006). «Глава 10: Впускные отверстия, сопла и системы сгорания». Элементы движителя: газовые турбины и ракеты . Образовательная серия AIAA. Рестон, Вирджиния: Американский институт аэронавтики и астронавтики. ISBN 1-56347-779-3.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий