Сжимаемость

Текучесть и сжимаемость

Для твердых и жидких тел выделяют ряд общих свойств. Одним из них стала текучесть. Для жидкостей она носит неограниченный характер. Оно возникает при воздействии внешних усилий к исследуемому объекту. В этом случае существует несколько вариантов развития событий. Жидкости в зависимости от степени и интенсивности воздействия может разделиться на два объекта или может начать перетекать. Новые части точно также заполнят объем сосуда, поскольку каждая из них не теряет первоначальных свойств.

Также жидкости чутко реагируют на воздействие различной температуры. Самая большая метаморфоза происходит при изменении агрегатного состояния вещества. Это достигается в процессе нагрева, охлаждения или кипения.

Сжимаемость характерна больше для газообразной жидкости. Они могут поддаваться сжатию при возникновении определенных условий. Одной из особенностей этого свойства является скорость всего процесса, а также его равномерность.

Помимо этого, жидкости могут испаряться и вновь конденсироваться. При испарении процесс характеризуется постепенным переходом вещества из жидкого агрегатного состояния в твердое. Конденсация обозначает обратный процесс по отношению к испарению.

Компрессия двигателя: что это такое и с чем это едят

Компрессия, если говорить простым языком — давление, формируемое в высшей точке движения коленчатого вала во время такта сжатия. Факторы, влияющие на изменение степени сжатия, могут многое рассказать о состоянии двигателя, уровне его износа и вероятных неполадках, сказывающихся на его нормальном функционировании и поведении автомашины в целом.

Измерение компрессии двигателя при помощи приборов

К числу таких факторов относят дефекты ГРМ, износ поршневой группы, закоксовку деталей и многие другие. Ухудшение технических параметров силового агрегата, резкий скачок потребления топлива — все это последствия изменения значения компрессии в большую или меньшую сторону вне зависимости от того, какие именно причины послужили толчком для этого.

Измеряется давление в атмосферах. Некоторые манометры используют другие единицы измерений — бар, Мегапаскаль.

Факторы, влияющие на компрессию ДВС

Компрессионный уровень напрямую зависит от объёма поступающего воздушного потока, который, в свою очередь, зависит от перечисленных выше неполадок и дефектов. Отдельно стоит упомянуть заслонку дросселя, которая оказывает немалое воздействие на сжатие в цилиндрах: её положение регулируется воздушным потоком. Его интенсивность, в свою очередь, зависит от воздушного фильтра: зачастую водители забывают его чистить и менять по мере загрязнения, что приводит к ухудшению его пропускной способности.

Загрязненный воздушный фильтр снижает компрессию двигателя

Значения компрессии могут сильно разниться в зависимости от выставленных фаз распределения газов: при допущении ошибок в процессе их установки меняется момент закрытия клапана впуска, что смещает цилиндр в определённом направлении.

Степень сжатия может меняться в зависимости от ширины просветов в клапанном приводе. К примеру, снизиться давление может при слишком маленьком зазоре, из-за чего закрывание впускных клапанов запаздывает. При этом увеличивается перекрытие клапанов — угол, при котором единовременно открываются клапаны. Это также отрицательно сказывается на уровне компрессии.

Поступающий в холодный двигатель поток воздуха из-за низкой температуры ДВС не успевает достаточно расшириться и прогреться, не создавая в дальнейшем нужное давление — соответственно, падает и компрессионная величина цилиндров.

Одна из причин сниженной компрессии — зазоры клапанов

Наличие зазоров клапанов приводит к появлению утечек воздуха. На их интенсивность влияют определённые факторы, которые оказывают аналогичное воздействие на величину компрессии:

  • Температура мотора. С её увеличением возрастает и компрессия, поскольку уменьшается расстояние между деталями;
  • Поступление моторного масла. Более плотное прилегание трущихся деталей двигателя друг к другу обеспечивается масляной прослойкой на их поверхности, что также позволяет уменьшить зазоры и снизить утечки воздуха сквозь них;
  • Подача горючего. Образующаяся на внутренней поверхности цилиндров масляная плёнка при попадании капель топлива быстро смывается, что может застопорить работу всего ДВС, повышает трение и уменьшает плотность прилегания поверхностей друг к другу;
  • Разгерметизация шлангов манометра, обратного клапана, высокое усилие, прикладываемое пружинами;
  • Возрастание оборотов коленвала.

На что влияет компрессия двигателя

Уровень компрессии двигателя влияет на различные процессы и параметры двигателя:

  • Полноту сгорания топлива;
  • Расход моторного масла;
  • Лёгкость пуска двигателя. Снижение давления ниже нормы значительно усложняет пуск мотора, особенно в холодное время года;
  • Исправную работу цилиндров. Низкая компрессия может повысить риск троения двигателя;
  • Мощность. Чем меньше компрессия, тем ниже мощность.

Коэффициент — объемное сжатие

Знак минус поставлен для того, чтобы коэффициент объемного сжатия жидкости был положительной величиной. В самом деле, при увеличении давления ( dp 0) объем жидкости уменьшается ( dVx 0) и наоборот, то есть дифференциалы в числителе и знаменателе равенства (19.22) имеют разные знаки. Коэффициент объемного сжатия жидкости обычно считается универсальной постоянной, то есть считается, что он не зависит ни от температуры, ни от давления, но для разных жидкостей он принимает разные значения.

При нагревании такого сосуда вследствие очень малого значения коэффициента объемного сжатия жидкого хлора в нем резко возрастает давление, которое во много раз превышает расчетное. Резкий рост давления внутри сосуда является причиной гидравлического разрыва его обечайки и других конструктивных элементов. Происходит выброс хлора в атмосферу и отравление людей.

Объемная деформация воды под действием сил давления характеризуется коэффициентом объемного сжатия pw 5 — 10 — 8 для давлений 1 — 500 am и коэффициентом температурного расширения рг: ( 14 -: — 719) 10 — 6 для интервала температур 0 ч — 100 С. Поэтому при рассмотрении движения воды в трещиноватой среде для обычно встречающихся в инженерной практике колебаний давлений и температур изменяемость объема воды весьма мала; и ею практически можно пренебречь.

Нельзя, однако, изменить характер зависимости, например, коэффициента объемного сжатия ( при постоянной температуре) от давления, изменяя единицы, в которых измеряются объем и давление. Если этот коэффициент уменьшается с увеличением давления при одном каком-нибудь выборе единиц, то он будет уменьшаться и при любом другом выборе их. Тогда надо ответить на вопрос, возникший фактически с момента изобретения термометра Галилеем: чем отличается измерение температуры от измерения такой величины, как, например, объем.

Модулем объемной упругости жидкости / С называется величина, обратная коэффициенту объемного сжатия.

Очевидно, что модуль объемной упругости — К является обратной величиной коэффициента объемного сжатия.

Винтовой пресс Рухгольца для тарировки пружинных манометров работает на масле с коэффициентом объемного сжатия р 6 25 10 — 5 см2 / кг.

Величина получаемых давлений пропорциональна мощности, обратно пропорциональна длительности импульса и зависит от коэффициента объемного сжатия жидкости. Средой для получения электрогидравлического эффекта может служить любая жидкость; наиболее удобной является техническая вода.

Найти приближенное значение частоты со первого тона вертикальных колебаний жидкости в трубе, если коэффициент объемного сжатия последней равен / ill / M J, а труба имеет круговое поперечное сечение площадью S. Считать, что амплитуды перемещений частиц жидкости по вертикали и изменяются но линейному закону ( смотри зпюру), растеканием жидкости в радиальном направлении пренебречь.

Поскольку непосредственное измерение сжимаемости жидкости в процессе испытаний затруднительно, НАТИ предложил методику определения коэффициента объемного сжатия по результатам специальных экспериментов. Так, при испытании гидромотора объем жидкости в под-поршневом пространстве, сжатый до рабочего давления, в конце рабочего хода поршня подключается к сливной магистрали с низким давлением и расширяется.

Здесь Ь, у-структурные параметры породы, зависящие от коэффициентов Юнга и Пуассона, коэффициентов объемного сжатия кварца и цемента породы, объемного содержания кварца и цемента породы, коэффициента пористости на контуре пласта; р, рк — текущее и контурное давление соответственно; kK — коэффициент проницаемости внешней границы.

Сжимаемостью называют способность жидкости изменять свою плотность при изменении давления или температуры; она характеризуется коэффициентом объемного сжатия Э1 / ( / Ср 273) ijepad. Если плотность при движении жидкости или газа не изменяется, то жидкость называют несжимаемой.

Для некоторых материалов, например глины, при деформации всестороннего сжатия между сжимающим давлением р и коэффициентом объемного сжатия 0 — div w также получается аналогичная зависимость.

Физически коэффициент объемного расширения fip показывает относительное изменение объема при изменении температуры на 1 С, а коэффициент объемного сжатия 3СЖ — относительное изменение объема при изменении давления на 0 1 МПа.

Относительное изменение объема жидкости при увеличении давления на 1 кг на каждый квадратный сантиметр ее поверхности характеризуется коэффициентом объемного сжатия ри.

Сжатие без потерь

Сжатие без потерь позволяет уменьшить размер файла так, чтобы в дальнейшем можно было восстановить первоначальное качество. В отличие от сжатия с потерями, этот способ не удаляет никакую информацию. Рассмотрим простой пример. На картинке ниже стопка из 10 кирпичей: два синих, пять жёлтых и три красных.

Вместо того чтобы показывать все 10 блоков, мы можем удалить все кирпичи одного цвета, кроме одного. Используя цифры, чтобы показать, сколько кирпичей каждого цвета было, мы представляем те же данные используя гораздо меньше кирпичей — три вместо десяти.

Это простая иллюстрация того, как осуществить сжатие без потерь. Та же информация сохраняется более эффективным способом. Рассмотрим реальный файл: mmmmmuuuuuuuoooooooooooo. Его можно сжать до гораздо более короткой формы: m5u7o12. Это позволяет использовать 7 символов вместо 24 для представления одних и тех же данных.

Где используется сжатие без потерь

ZIP-файлы — популярный пример сжатия без потерь. Хранить информацию в виде ZIP-файлов более эффективно, при этом когда вы распаковываете архив, там присутствует вся оригинальная информация. Это актуально для исполняемых файлов, так как после сжатия с потерями распакованная версия будет повреждена и непригодна для использования.

Другие распространённые форматы без потерь — PNG для изображений и FLAC для аудио. Форматы видео без потерь встречаются редко, потому что они занимают много места.

2.1. Основные понятия гидростатики

2.1.1.
Равновесие жидкости. Гидростатическое
давление

2.1.2.
Давление абсолютное, избыточное, вакуум

2.1.3.
Свойства гидростатического давления

2.1.4.
Основное уравнение гидростатики. Закон
Паскаля

2.1.5.
Поверхности уровня

2.1.1.
Равновесие жидкости. Гидростатическое
давление

Гидростатика
— раздел гидравлики о законах равновесия
жидкости и её взаимодействии с твердыми
телами и газами.

Равновесие
капельных жидкостей.
Под
равновесием жидкости понимается
отсутствие перемещения одних её частей
относительно других и жидкости в целом
относительно ограничивающих её стенок.
При этом сам сосуд вместе с заключенной
в нем жидкостью может перемещаться в
любом направлении и с любым ускорением.
Различают «абсолютное»
и относительное
равновесие
(покой) жидкости.

«Абсолютное»
равновесие»

— это равновесие жидкости в неподвижном
относительно земли сосуде в поле только
гравитационных сил. При «абсолютном»
равновесии результирующая массовых
сил направлена вертикально вниз.

Относительное
равновесие

жидкости — это равновесие её в поле силы
тяжести и сил инерции. При относительном
равновесии результирующая массовых
сил может быть направлена в любом
направлении.

Очевидно,
что «абсолютное» равновесие представляет
собой частный случай относительного,
характеризующийся тем, что из всех
массовых сип действует только сила
тяжести.

В
жидкости, находящейся в покое, силы
трения, обусловленные вязкостью, не
проявляются (не действуют касательные
силы). Поэтому, реальные жидкости по
своим свойствам будут очень близки к
идеальным, и, следовательно, все задачи
гидростатики будут решаться с большой
точностью.

Гидростатическое
давление.
Как
отмечалось ранее,
н
а
жидкость могут действовать поверхностные
и массовые силы
.
Массовые
силы

в соответствии со вторым законом Ньютона
про­порциональны массе жидкости или,
для однородной жидкости, — ее объёму. К
ним относятся сила
тяжести

и сила
инерции

переносного движения системы, действующая
на жидкость при относительном ее покое
(а также при ускоренном движении).

Поверхностные
силы

непрерывно распределены по поверхности
жидкости и при равномерном их распределении
пропорциональны площади этой поверхности.
Эти силы обусловлены непосредственным
воздействием соседних объемов жидкости
на данный объем или же воздействием
других тел (твердых или газообразных),
соприкасающихся с данной жидкостью.
Как следует из третьего закона Ньютона,
с такими же силами, но в противоположном
направлении, жидкость действует на
соседние с нею тела.

Согласно
положению теоретической механики любая
система, в том числе и жидкостная, может
находиться в равновесии только при
условии равенства нулю равнодействующей
всех приложенных к ней внешних
сил
,
а также их результирующего момента.
Состояние жидкости при этом характеризуется
только внутренними (молекулярными)
силами.

Рассечём
жидкость воображаемой поверхностью и
выделим около точки
с координатами некоторую площадку
величиной(рис. 2.1).

Рис. 2.1. Разложение
поверхностной силы на две составляющие

В
общем случае поверхностная сила
,
действующая в точкена площадке,
направлена под некоторым углом к ней,
и ее можно разложить на две силы:-
нормальную сжимающую силу; и-
тангенциальную силу или силу трения.
Нормальная сжимающая сила
может быть условно представлена в виде
вектора, который направлен по внутренней
нормали к выделенной площадке (т.е.
внутрь объёма жидкости) и приложена к
площадке в точке.

Среднее
напряжение этой силы
можно найти, отнеся её к площадипо формуле

. (2.1)

Для
определения истинного значения напряжения
в точке
необходимо перейти к пределу этого
отношения при условии, что площадкауменьшении до нуля

. (2.2)

Нормальное
напряжение силы давления, называется
гидромеханическим
давлением
,
или
просто давлением, и обозначается буквой
.

На
внешней поверхности силы давления
всегда направлены по
нормали

внутрь объема жидкости и, следовательно,
являются
сжимающими.
Таким
образом, в неподвижной жидкости возможен
лишь один вид напряжения — напряжение
сжатия
,
т.е. гидростатическое
давление
.

Касательное
напряжение в жидкости, т. е. напряжение
трения, обозначается буквой
и выражается подобно давлению пределом
отношения, а размерность его та же, что
и давления,

. (2.3)

Удельный объем в скороварке

Чаще всего еда в скороварке — в форме жидкости. Конечно, часто в скороварке находятся и продукты питания в твердом состоянии, например мясо и овощи, но для успешной работы скороварки необходима жидкость. Когда крышка скороварки плотно закрыта, пар выходит из нее только через специальный патрубок, на который надет регулятор давления. Поэтому во время приготовления пищи в скороварке легко поддерживать постоянный удельный объем, что и делается. Главная цель приготовления еды в скороварке — приготовить еду с использованием более высокой температуры, и с наименьшим испарением жидкости. Такой способ ускоряет процесс приготовления пищи. Некоторое количество пара нам, все же, необходимо, так как именно горячий пар используется в скороварке для тепловой обработки продуктов. Теплоемкость пара намного выше теплоемкости воздуха, то есть он намного лучше воздуха хранит энергию. Высокая теплоемкость пара и тот факт, что скороварка позволяет нам поддерживать в ней температуру до 120° С означает, что еда в ней готовится намного быстрее и с меньшими затратами энергии, чем если бы ее готовили в кипящей воде или в духовом шкафу.

Чтобы поддерживать массу и объем неизменными, из скороварки почти не выпускают пар во время приготовления пищи. Это также помогает поддерживать более-менее постоянный удельный объем. Как уже обсуждалось ранее, если давление, температура или удельный объем постоянны, то величина двух других переменных зависит друг от друга. То есть, при увеличении температуры, как в начальной стадии приготовления пищи в скороварке, давление внутри скороварки также увеличится. Через некоторое время система достигнет равновесия между давлением и температурой. При дальнейшем увеличении наружной температуры жидкость в скороварке начнет испаряться. Эта температура — максимально возможная для данных давления и удельного объема. Как только наша система достигла этой температуры, мы убавляем огонь, чтобы поддерживать постоянную температуру и давление до конца процесса приготовления пищи.

Использование скороварки не только позволяет сберечь электроэнергию

Как мы упоминали выше, время приготовления пищи в скороварке намного меньше, чем если бы мы использовали другие методы приготовления, поэтому кухня нагревается намного меньше, что особенно важно в жаркую погоду. К тому же, еда, приготовленная в скороварке, намного полезнее для здоровья, чем, например, жареная еда, так как в скороварке не нужно масло, которое необходимо для жарения

Автор статьи: Kateryna Yuri

Зачем и как сжимать данные?

Ключевые слова:

• сжатие данных 
• коэффициент сжатия 
• сжатие без потерь 
• сжатие с потерями
• архивация
• самораспаковывающийся
				 архив
• программа-архиватор 
• контрольная сумма 

Для того чтобы сэкономить место на внешних носителях (жёстких дисках, «флэшках») или ускорить передачу данных по компьютерным сетям, можно сжать данные — уменьшить их информационный объём, сократить размер файла.

Как вы уже знаете, рисунки часто хранятся в сжатом виде. Кроме того, сжатие почти всегда используется при хранении и передаче звука и видео — упаковку и распаковку этих данных выполняют специальные программы-кодеки.

Покажем, как можно сжать данные, на простом примере. Есть файл, в котором в 8-битной кодировке записаны сначала 100 русских букв А, а потом — 100 букв Б (рис. 2.39).

Рис. 2.39

Каждая буква на рис. 2.39 занимает 8 бит. Определите информационный объём файла в байтах.

Теперь запишем те же самые данные иначе: сначала количество повторений первого символа, а затем — сам первый символ, потом так же для второго символа (рис. 2.40).

Рис. 2.40

Каждая ячейка на рис. 2.40 занимает 8 бит. Определите информационный объём файла в байтах.

Объём файла уменьшился, это значит, что мы сжали данные.

Коэффициент сжатия — это отношение размера исходного файла IO к размеру сжатого файла IСЖ: kсж = IO / IСЖ

Определите коэффициент сжатия файла в рассмотренном выше примере.

Почему же этот файл удалось так удачно сжать? Всё дело в том, что в нём были длинные цепочки повторяющихся символов, и мы применили алгоритм, который очень удачно их сжимает. Этот алгоритм называется кодированием цепочек одинаковых символов (по-английски — RLE 1) : Run Length Encoding).

1) Алгоритм RLE можно успешно использовать для сжатия рисунков, в которых большие области закрашены одним цветом.

В файле записаны 100 различных символов. Определите коэффициент сжатия файла с помощью алгоритма RLE. Что означает полученное число?

Данные можно сжать, если в них есть какие-то закономерности (избыточность), например одинаковые символы, стоящие рядом, или одинаковые цепочки символов («слова»). Поэтому хорошо сжимаются данные, в которых таких закономерностей много, например тексты и рисунки. Хуже всего сжимаются случайные данные, в которых нет ничего закономерного.

Программы для сжатия данных выявляют избыточность данных и устраняют её, поэтому сжимать второй раз уже сжатые данные чаще всего бесполезно.

Следующая страница Сжатие без потерь

Cкачать материалы урока

Коэффициент — сжатие — струя

Коэффициент сжатия струи зависит от формы отверстия ( для круглого отверстия он меньше, чем для щели) и его расположения относительно стенок сосуда. Вблизи стенок а выше ( поскольку со стороны жидкости у этих стенок действие сил инерции при формировании струи ослаблено); по мере удаления от стенок а достаточно быстро приближается к своему постоянному значению; при удалении от стенок на расстояние трех диаметров отверстия и дальше — влияния стенок уже не чувствуется. Коэффициент а также несколько возрастает с увеличением напора.

Коэффициент сжатия струи при затопленном истечении практически не отличается от коэффициента сжатия при истечении через свободное отверстие. Коэффициенты расхода при истечении череа малые отверстия при затопленных и незатопленных струях также равны.

Графики для определения расхода Q при истечении жидкости из отверстия площадью о — 1. 2 при различных коэффициентах расхода р, ( т. е. по формуле Qp r 2g / /.| Истечение из полузатопленного отверстия.| Истечение из затопленного отверстия.

Коэффициент сжатия струи е при затопленном истечении практически не отличается от коэффициента сжатия струи при истечении через незатопленное отверстие.

Коэффициент сжатия струи зависит прежде всего от конфигурации входной кромки насадки, а также от критерия Рей-нольдса, соотношения Ai / A0 и даже от природы жидкости.

Разрежения в распылителе и у стенки диффузора карбюратора.| Конструкции жиклеров карбюратора.

Коэффициент сжатия струи и представляет собой отношение сечения вытекающей из жиклера струи топлива к площади его калиброванного отверстия.

Схема движе-ния потока на повороте тру-бопровода.| Закругленное колено.

Коэффициент сжатия струи е зависит от величины угла поворота а.

Истечение из полузатопленного отверстия.

Коэффициент сжатия струи е при затопленном истечении практически не отличается от коэффициента сжатия струи при течении через незатопленное отверстие.

Коэффициент сжатия струи е зависит от угла поворота а. Так, е1 при а 0 и е 0 5 при а90 ( прямоугольное колено), т.е. ширина вихря составляет около половины ширины трубы.

Коэффициент сжатия струи при затопленном истечении, как показывает опыт, практически не отличается от коэффициента сжатия при истечении через незатопленное отверстие.

Истечение жидкости через затопленное отверстие.

Коэффициент сжатия струи при затопленном истечении практически не отличается от коэффициента сжатия при истечении через свободное отверстие. Коэффициенты расхода при истечении через малые отверстия при затопленных и незатопленных струях также одинаковы.

Теплоемкость и поверхностное натяжение

Жидкости обладают способностями по поглощению веществами определенного количества тепла. Это им необходимо для того, чтобы повысить собственную температуру вещества. От веществ с разной степенью соединений и других показателей зависят способности по теплоемкости. Некоторые могут обладать более мощной теплоемкостью по сравнению с другими жидкостями. Одними из самых успешных теплоемких веществ является вода. Она накапливает в своих молекулах определенное количество тепла и сохраняет его некоторое время. Поэтому именно воду принято активно использовать в качестве элемента системы отопления, а также для приготовления пищи и иных нужд человека.

Поверхностное натяжение достигается в тот момент, когда жидкость занимает определенный объем. Она снаружи может граничить с другой средой, например, воздухом или другим веществом. В месте соприкосновения этих веществ создается так называемое разделение фаз. Также это явление принято считать поверхностным натяжением. Молекулы жидкости стремятся в этом положении окружить себя такими же частицами и сжимают жидкость еще больше. Поэтому визуально поверхность жидкого тела словно натягивается. Такое же явление начинает возникать при отсутствии признаков иных внешних факторов, так как идеальной формой жидкости является шар.

Что такое вязкость жидкости? Как зависит вязкость от температуры и давления?

Вя́зкость (вну́треннее
тре́ние) — одно из явлений переноса,
свойство текучих тел (жидкостей и газов)
оказывать сопротивление перемещению
одной их части относительно другой.
Механизм внутреннего трения в жидкостях
и газах заключается в том, что хаотически
движущиеся молекулы переносят импульс
из одного слоя в другой, что приводит к
выравниванию скоростей — это
описывается введением силы трения.
Вязкость твёрдых тел обладает рядом
специфических особенностей и
рассматривается обычно отдельно.

Различают
динамическую вязкость (единицы
измерения: пуаз,
0,1Па·с) и кинематическую вязкость
(единицы измерения: стокс,
м²/с, внесистемная единица — градус
Энглера). Кинематическая
вязкость может быть получена как
отношение динамической вязкости к
плотности вещества и своим происхождением
обязана классическим методам измерения
вязкости, таким как измерение времени
вытекания заданного объёма через
калиброванное отверстие под действием
силы тяжести.

Алгоритмы сжатия данных неизвестного формата

Имеется два основных подхода к сжатию данных неизвестного формата:

  • На каждом шаге алгоритма сжатия очередной сжимаемый символ либо помещается в выходной буфер сжимающего кодера как есть (со специальным флагом, помечающим, что он не был сжат), либо группа из нескольких сжимаемых символов заменяется ссылкой на совпадающую с ней группу из уже закодированных символов. Поскольку восстановление сжатых таким образом данных выполняется очень быстро, такой подход часто используется для создания самораспаковывающихся программ.
  • Для каждой сжимаемой последовательности символов однократно либо в каждый момент времени собирается статистика её встречаемости в кодируемых данных. На основе этой статистики вычисляется вероятность значения очередного кодируемого символа (либо последовательности символов). После этого применяется та или иная разновидность энтропийного кодирования, например, арифметическое кодирование или кодирование Хаффмана, для представления часто встречающихся последовательностей короткими кодовыми словами, а редко встречающихся — более длинными.

Удельный объем — жидкость

Удельный объем жидкости зависит от температуры и давления, но в пределах давлений от 0 до 200 ата зависимость от давления весьма мала и ею обычно пренебрегают, считая жидкость несжимаемой.

Удельный объем жидкости считается неизменным, используют значения параметров до критического сечения.

Удельный объем жидкости v в ( 25 — 2) равен среднему удельному объему между нормальным давлением насыщения ps и давлением р внутри капли при данной температуре.

Поскольку удельный объем жидкости растет, а пара падает, то при постоянном увеличении давления мы достигнем такой точки, в которой удельные объемы жидкости и пара сравняются. Эта точка называется критической. В критической точке различия между жидкостью и паром исчезают.

Поскольку удельный объем жидкости растет, а пара падает, то при постоянном увеличении давления мы достигнем такой точки, в которой удельные объемы жидкости и пара сравняются. Эта точка называется критической. Так как все различия между газом и жидкостью связаны с разницей в плотности ( или удельном объеме), то в критической точке свойства жидкости и газа становятся одинаковыми. Для воды параметры критической точки / С составляют: ркр 221 29 — 105 Па, kp374 15 C, акр 0 00326 м3 / кг.

Расчет удельных объемов жидкостей по отдельным аппаратам производится с помощью уравнений материального баланса по натрию и хлору. Полученные таким путем формулы для вычисления объемов жидкостей показывают, что эти объемы изменяются примерно обратно пропорционально концентрации хлора в жидкости.

Измерение удельного объема жидкости несложно. Для большинства простых органических жидкостей известно по крайней мере одно его экспериментальное значение.

V — удельный объем жидкости, Тс-критическая температура жидкости, Т — температура, при которой измеряется поверхностное натяжение ( обе температуры выражаются в градусах ЦельсиЯ), и К — константа, имеющая значение 2 12 для нормальных неассоциированных жидкостей.

При ТТа удельные объемы жидкости и газа соответственно равны vi и уа. Если взять теперь для конкретного рассмотрения некоторый сосуд ( ампулу) с фиксированным объемом V, то ясно, что при ТТа масса заполняющей сосуд среды М может изменяться от Vlv до V / v % г. Первый случай соответствует полному заполнению ампулы жидкостью, а второй — газом.

Давление и удельный объем жидкости, соответствующие ее критической температуре, называются также критическими и обозначаются соответственно через рк и ик.

V — удельный объем жидкости; А, В я С-коэфициенты, зависящие от температуры и давления.

Зависимость же удельного объема жидкости от температуры более значительна. При нагреваний жидкость расширяется и ее удельный объем v увеличивается.

Производить измерения удельных объемов жидкостей гораздо легче, чем газов, и для большинства известных жидкостей имеется по крайней мере по одному результату. Известный Справочник по химии и физике содержит прекрасные таблицы удельных объемов жидкости. Большое количество экспериментальных результатов имеется в последних статьях. Фрэнсис опубликовал константы эмпирических уравнений, которые позволяют определять плотности насыщенных жидкостей и изменения плотностей с давлением для 130 различных чистых жидкостей в широком температурном интервале. Следует отметить, что при возможности нужно, конечно, пользоваться экспериментальными данными, а не корреляциями, рассматриваемыми ниже.

Связь между удельными объемами жидкости и пара на линии насыщения и и и, давлением насыщенного пара рп, температурой Та и скрытой теплотой парообразования может быть получена следующим образом.

Если пренебречь удельным объемом жидкости и предположить, что средний удельный объем смеси в зоне испарения будет равен половине удельного объема на выходе из печи, то к потере давления на трение нужно прибавить половину потери динамического напора, вычисленную для условий на выходе из печи.

Энергия

Энергия
– это общая количественная мера движения
и взаимодействия всех видов материи.

Энергия
независимо от конкретных форм
проявления обозначается Е.
За единицу энергии в СИ принят д ж о у
л ь (Дж). Джоуль – это энергия, затраченная
системой при перемещении точки вследствие
приложения силы 1 Н на расстояние 1 м в
направлении действия силы, то есть 1 Дж
= 1 Н ٠
1
м. Вычислить абсолютное значение энергии
невозможно, так как нет ноля отсчета
энергии. Такое положение не играет
существенной роли для практики, потому
что при исследовании энергообмена важна
не абсолютная величина энергии, а ее
изменение.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий