Воздушное охлаждение двигателя: принцип работы, преимущества и недостатки

Как мы «докатились» до жидкого металла?

Локальные эксперименты в российском офисе ASUS показывали, что замена термопасты с заводской на Thermal Grizzly Kryonaut дает снижение температуры центрального процессора в диапазоне 7-10 градусов по Цельсию. Лично для меня жидкий металл в качестве термоинтерфейса всегда стоял в стороне, поскольку при отрицательных температурах использовать его достаточно сложно. Из-за частых заморозок-разморозок образуется ледяной нарост, который начинает отжимать стакан для жидкого азота от крышки процессора, и в какой-то момент жидкий металл «отклеивается» от основания азотного стакана и перестает передавать ему тепло с теплораспределительной крышки

Если вовремя не обратить внимание на характерный звук и выросшую дельту температур на основании стакана (там будут отрицательные температуры) и ядрах процессора (там будут положительные температуры), то все закончится очень печально. В лучшем случае «умрет» только процессор, а в худшем случае утащит за собой что-то еще

В случае же использования термоинтерфейса жидкого металла в домашнем компьютере или ноутбуке на каждый день тоже есть определенные риски и сложности, с которыми инженерам ROG пришлось бороться под натиском локальных офисов.

Объединившись с другими странами, мы смогли убедить штаб-квартиру начать тестирование жидкого металла в качестве термоинтерфейса в системах охлаждения ноутбуков еще в 2018 году. Правда, нам пришлось столкнуться с рядом бюрократических трудностей. Одним из самых курьезных моментов стал ответ инженеров, что они не могут купить жидкий металл в Тайване. Но я-то прекрасно знал, что у коллег из департамента материнских плат жидкий металл есть в наличии, поэтому мы продолжили воевать «с системой».

Решив проблему «нежелания», мы столкнулись с другой проблемой. Ведь наносить жидкий металл на поверхность кристалла не так уж и просто, а в рамках массового производства это практически невозможно. В итоге жидкий металл дебютировал в 2019 году в ROG Mothership, в выпущенном ограниченным тиражом в 1000 экземпляров.

Если собрать все трудности с жидким металлом вместе, то я бы выделил следующие:

  • сложность нанесения

  • жидкий металл проводит ток

  • коррозия металлов, контактирующих с термоинтерфейсом

  • стоит дороже термопасты

На протяжении следующего года инженеры ROG решали вышеперечисленные проблемы.

Жидкий металл наносится специальным станком при помощи силиконовой кисти.

Для нанесения жидкого металла в масштабах массового производства был создан специальный станок, который позволял решить, пожалуй, самую главную и сложную задачу — равномерное нанесение термоинтерфейса по поверхности кристалла процессора. В нашем случае используется жидкий металл от Thermal Grizzly, отличающийся от других производителей на рынке пониженной концентрацией олова в составе, что делает его более эффективным. На начальных этапах процесс тестирования жидкого металла был настолько засекречен, что первые партии термоинтерфейса Thermal Grizzly покупались на рынке у нескольких продавцов, а не напрямую у производителя, чтобы не допустить утечек информации.

Важно помнить, что жидкий металл проводит ток, поэтому меры предосторожности очень важны. На первом этапе на заводе используется специальная пластина, которая закрывает собой все вокруг кристалла процессора и принимает на себя излишки жидкого металла. С помощью специальной силиконовой кисти жидкий металл будет распределяться по всей поверхности кристалла

Надо отметить, что даже подбор материала для этой кисти был не таким простым, было испробовано около 30 различных материалов и выбор остановился на силиконе, который не деформирует нанесенный слой

С помощью специальной силиконовой кисти жидкий металл будет распределяться по всей поверхности кристалла. Надо отметить, что даже подбор материала для этой кисти был не таким простым, было испробовано около 30 различных материалов и выбор остановился на силиконе, который не деформирует нанесенный слой.

Добавляем еще немного ЖМ для создания безупречного контакта между кристаллом и радиатором СО

На следующем этапе пластина убирается и с помощью своего рода «шприца» на поверхность кристалла добавляется несколько капель жидкого металла, которые должны будут занять все свободное пространство между кристаллом и радиатором системы охлаждения для эффективного теплообмена. После этого устанавливается система охлаждения. В коротком видео можно посмотреть подробности процесса:

Недостатки

Не обошлось и без недостатков. Прежде чем приобрести авто, оснащенный подобной системой охлаждения, следует знать основные минусы данных решений.

Так, работа двигателя сопровождается непомерно громким шумом. Шум этот создает работающий вентилятор. Еще один минус – это размеры, так как мотор комплектуется обдувающими устройствами. Даже при современных темпах развития технологий, воздушные потоки неравномерно направлены, а значит, есть риск локальных перегревов. Двигатели такого типа очень чувствительны к качеству бензина, масла, предъявляются высокие требования к состоянию основных деталей в моторе.

Но автомобили с такой системой прочно заняли свое место в автомобилестроении. Этими силовыми агрегатами оснащают грузовые авто, есть несколько легковых моделей. На воздушном охлаждении работает сельскохозяйственная и военная техника, некоторые дизельные двигатели.

Как масло может потерять свои свойства?

Простой пример – имеем грузовой автомобиль. Обороты, как правило, у них небольшие (не оборотистые движки), а вот грузы которые они на себе таскают, могут быть внушительными.

В итоге, помпа вроде бы и качает (антифриз или ТОСОЛ), но достаточно охладить не может.

От этого идет излишний разогрев всего двигателя, а в частности масла. Кстати смазка может разогреваться еще и от того, что масляные форсунки убирают излишнюю температуру от поршней.

То же самое происходит, если его нагревать над газовой конфоркой (не верите — попробуйте).

Именно из-за этого и нужно масляный радиатор — чтобы убрать лишнюю температуру от смазки.

Если масло попадает в антифриз: последствия для мотора

Вполне очевидно, что масло в расширительном бачке является тревожным сигналом, причем намного больше рисков в этом случае не для самой системы охлаждения, а для двигателя. Другими словами, если смазочный материал проникает в систему охлаждения, значит и антифриз попадает в систему смазки.

Не сложно догадаться, что при смешивании двух типов жидкостей, которые содержат пакеты активных присадок, возникает непредсказуемая и неконтролируемая химическая реакция. Результатом становится ухудшение свойств смазки и ОЖ, происходит повышенное загрязнение как масляных каналов, так и каналов системы охлаждения.

Естественно, в подобном случае все нагруженные детали мотора начинают подвергаться значительному износу. Из строя быстро выходят коренные и шатунные вкладыши, на стенках цилиндров могут образоваться задиры и т.д. Достаточно часто двигатель попросту заклинивает, после чего требуется дорогостоящий капремонт.

Как правило, причиной интенсивного попадания ОЖ в масло часто является пробитая прокладка ГБЦ, сильная коррозия стенок цилиндра и трещины, что и приводит к активному попаданию в камеру сгорания антифриза. Кстати, если много жидкости соберется в надпоршневом пространстве на заглушенном ДВС, тогда при попытке запуска мотора происходит гидроудар двигателя.

Очистка системы с помощью специальной автохимии

На Российском рынке представлены несколько эффективных чистящих средств которые можно использовать для промывки системы охлаждения от остатков масла:

  • ABRO AB-505 —удаляет известковую накипь, ржавчину и масляные отложения. Объем 354 мл, заливается в охлаждающую систему, заполненную водой. После нагрева двигателя до рабочей температуры, необходимо дать ему поработать в холостую, в течении получаса. Затем, заглушить двигатель. Дальше промывать систему надо на заведенном двигателе, при открытом сливном кране, постоянно заливая воду в радиатор или в расширительный бачок, до тех пор, пока сливаемая жидкость не станет прозрачной.
  • LIQUI MOLYKuhlerreiniger—эффективное средство, содержащее энзимы и ПАВы, предназначенное для растворения и удаления накипи и загрязнений(в том числе густую смазку) из системы охлаждения и нейтрализует кислоту. В составе отсутствуют агрессивные щелочи и кислоты, поэтому его можно рекомендовано применять при каждой замене. Оно нейтрально к резине, металлу и пластику. Для очистки необходимо залить жидкость в систему (одна баночка на 10 литров антифриза). Затем прогреть двигатель и дать ему поработать на холостом ходу 10 — 30 минут. Залитую жидкость допускается оставлять в системе на период до трех часов, причем иво время использования машины. После слива старого антифриза, систему надо промыть проточной водой и можно заливать новый.
  • LAVR— набор для двухэтапной, полной промывки. Специально разработан для работы с очень сложными загрязнениями и состоит из двух флаконов:
    1. Очиститель ржавчины и накипи (первый этап)—заливается в пустую систему, а затем она заполняется чистой, желательно дистиллированной водой, до минимального уровня. Затем необходимо прогреть двигатель и оставить его работать на полчаса.
    2. Очиститель масляно-эмульсионных отложений и различных остатков разложения старой охлаждающей жидкости (второй этап). После слива первого раствора, в систему заливается жидкость из второго флакона, и система вновь заполняется водой до минимальной отметки. Машину заводят, прогревают и оставляют работать на полчаса вхолостую. Затем раствор сливается, система снова заполняется чистой водой, двигатель прогревается и его оставляют работать на 15 минут. Последнюю процедуру следует повторять до тех пор, пока из системы не начнет сливаться чистая вода и после этого можно заполнять систему антифризом.

Если произошло небольшое загрязнение антифриза масляными продуктами, то могут подойти и другие промывочные жидкости LAVR — классическая (Classic), для коммерческого транспорта (Fortrucks) и синтетическая (Syntetic) которые также предназначены для удаления следов масла.

Помимо перечисленных промывок, можно подобрать аналоги и других производителей — Bizol,Pingo, CRC. Все они эффективно растворяют различные загрязнения и не наносят ущерба деталям и компонентам,входящим в систему охлаждения.

Недостатки

  • Охлаждающее масло можно использовать только для охлаждения объектов при температуре примерно 200–300 ° C, в противном случае масло может разлагаться и даже оставлять пепельные отложения.
  • Чистая вода может испаряться или закипать, но она не разлагается, хотя может стать загрязненной и кислой.
  • Вода, как правило, доступна на случай добавления охлаждающей жидкости в систему, но может отсутствовать.
  • В отличие от воды масло может легко воспламеняться.
  • Удельная теплоемкость воды или воды / гликоля составляет примерно вдвое больше , чем нефти, так что заданный объем воды может поглощать больше тепла , чем двигатель может же объем нефти.
  • Следовательно, вода может быть лучшим охлаждающим средством, если двигатель постоянно выделяет большое количество тепла, что делает его более подходящим для высокопроизводительных или гоночных двигателей.

Что произойдет, если поломку не устранить вовремя?

Моторная и охладительная смеси имеют разную структуру и химический состав присадок, поэтому смешиваясь, компоненты их структуры вступают в химические реакции. Гликоль, входящий в антифриз способен образовывать на элементах привода вредные отложения. Для дизельных силовых агрегатов последствия могут быть совсем плачевными: внутри дизеля очень высокая температура, отложения при ней практически пригорают на поверхности элементов мотора, удалить их невозможно.

Этиленгликоль, входящий к составу антифриза, взаимодействуя с минеральным или синтетическим маслом, образовывает большое количество кислот, которые разъедают внутренние детали мотора. Если такая реакция будет происходить на протяжении длительного времени: масло слипнется.

Масло значительно увеличивает вязкость антифриза, вся система охлаждения начинает работать недостаточно хорошо — путь к перегреву силового агрегата.

Исходя из всего вышеизложенного, нужно обращать внимание на состояние ОЖ, во избежание поломки мотора. Выявив смешивание расходного материала смазочной системы с антифризом, устраните поломку как можно быстрее

Ездить на такой машине длительное время не стоит.

Из чего состоит охлаждающая система мотора?

  • Радиатор,
  • Верхний шланг радиатора,Нижний шланг радиатора,
  • Помпа,
  • Термостат,
  • Электрический вентилятор,
  • Термо-таймер,
  • Радиатор.

Радиатор является наиболее важной частью механизма охлаждения. Охлаждающая смесь, прошедшая через двигатель, прокачивается через трубки радиатора и охлаждается в течение следующего цикла

Шланги радиатора

Система охлаждения мотора имеет несколько резиновых шлангов, которые перемещают жидкость из одного места в другое. Эти шланги радиатора необходимо заменить, прежде чем они станут хрупкими и треснутыми.

Помпа

Водяной насос прокачивает охлаждающую жидкость через систему. В большинстве двигателей насос оснащен ременным приводом, за исключением некоторых гоночных автомобилей, которые используют электрические водяные насосы.

Термостат

Автомобильный двигатель не всегда поддерживает одинаковую температуру и его запуск в холодную погоду занял бы целую вечность, если бы он оставался при одинаковой температуре. Термостат контролирует поток охлаждающей жидкости через систему охлаждения, а охлаждающая жидкость охлаждает двигатель. Термостат действует как клапан, который контролирует поток охлаждающей жидкости. Внутри находится воскообразное вещество, которое размягчается при определенном температурном пороге, открывая клапан и позволяя охлаждающей жидкости свободно течь.

Электрический вентилятор

Современные автомобили имеют вентилятор для основного или дополнительного охлаждения. Если автомобиль движется медленно, чтобы создать достаточный поток воздуха для охлаждения двигателя, вентилятор всасывает воздух через радиатор.

При этом вентилятор может быть механическим (приводится в движение от вращения двигателя) и создавать силу для перемещения воздуха через радиатор в жарких условиях или во время стоянки автомобиля. Система имеет датчик, который определяет повышение температуры антифриза и дает команду вентилятору работать.

Охлаждающая жидкость

Это транспортное средство, которое отводит тепло от двигателя через охладительную систему в атмосферу. Свойства антифриза становятся важными в холодную погоду — ведь если использовать простую воду, она быстро замерзнет, расширится и повредит множество компонентов.

Водяной насос

Этот компонент способствует циркуляции антифриза по всей системе. Чаще всего водяной насос приводится в движение цепью, либо ремнем газораспределительного механизма двигателя), но вместо этого на некоторых автомобилях установлен водяной насос с электронным управлением.

Двигатель

Двигатель имеет несколько внутренних проходов и портов, через которые идет охлаждающая смесьь, поглощая тепло и отводя его. Антифриз выходит из блока цилиндров/головки двигателя через различные шланги, которые переносят охлаждающую жидкость к другим частям системы.

Сердечник нагревателя

Это еще один компонент, имеющий множество мелких ребер, которые рассеивают тепло. Однако это тепло используется для обогрева пассажирского салона (если это необходимо), и поступает в кабину через вентилятор/двигатель вентилятора.

Датчики

Система охлаждения обычно имеет два датчика: датчик температуры антифриза и измеритель уровня охлаждающей жидкости. Датчик температуры контролирует тепло охлаждающей жидкости и обнаруживает перегрев. Измеритель уровня контролирует количество антифриза в системе (если оно падает слишком низко, это может привести к перегреву).

Также система охлаждения также имеет различные трубки, которые помогают переносить охлаждающую жидкость от одного основного компонента к другому с конечной целью поддержания температуры двигателя в безопасном рабочем диапазоне (и предотвращения повреждения двигателя).

Системы охлаждения силового масляного трансформатора.

Принципиальная схема охладителя системы Д: 1-бак трансформатора; 2-радиаторы охладителя; 3-вентилятор обдува

Принципиальная схема охладителя системы ДЦ: 1-бак трансформатора; 2-масляный электронасос; 3-адсорбционный фильтр; 4-охладитель; 5-вентилятор обдува

Существует несколько систем охлаждения силового масляного трансформатора:

Естественное масляное охлаждение(М)
применяется в силовых масляных трансформаторах мощностью до 16000 кВ⋅А.
В таких трансформаторах тепло, выделенное в обмотках и магнитопроводе, передается маслу, циркулирующему по баку и радиаторам,
а затем — окружающему воздуху. При номинальной нагрузке трансформатора в соответствии с Правилами технической эксплуатации температура
масла в верхних, наиболее нагретых слоях не должна превышать +95°С. Для лучшей отдачи тепла в окружающую среду бак силового
масляного трансформатора снабжают ребрами, охлаждающими трубами или радиаторами в зависимости от мощности.

Масляное охлаждение с дутьем и естественной циркуляцией масла(Д)
применяется для более мощных силовых масляных трансформаторов.
В этом случае в навесных охладителях из радиаторных труб помещают вентиляторы. Вентилятор засасывает воздух снизу и обдувает нагретую
верхнюю часть труб. Пуск и останов вентиляторов осуществляется автоматически в зависимости от нагрузки и температуры нагрева масла.
Силовые масляные трансформаторы с таким охлаждением могут работать при полностью отключенном дутье, если нагрузка не превышает 1.00%
от номинальной, а температура верхних слоев масла не более 55°С, а также независимо от нагрузки при отрицательных температурах
окружающего воздуха и температуре масла не выше 45°С. Максимально допустимая температура масла в верхних слоях при работе
трансформатора с номинальной нагрузкой 95°С. Форсированный обдув радиаторных труб улучшает условия охлаждения масла,
а следовательно, обмоток и магнитопровода силового масляного трансформатора, что позволяет изготовлять такие трансформаторы
мощностью до 80000 кВ⋅А.

Масляное охлаждение с дутьем и принудительной циркуляцией масла через воздушные охладители(ДЦ)
применяется для силовых
масляных трансформаторов мощностью 63000 кВ⋅А и выше. Охладители состоят из тонких ребристых трубок,
обдуваемых снаружи вентилятором. Электронасосы, встроенные в маслопроводы, создают непрерывную принудительную циркуляцию масла
через охладители. Благодаря высокой скорости циркуляции масла, большой поверхности охлаждения и интенсивному дутью охладители обладают
большой теплоотдачей и компактностью. Такая система охлаждения позволяет значительно уменьшить габаритные размеры силовых масляных
трансформаторов. Охладители могут устанавливаться вместе с силовым масляным трансформатором на одном фундаменте или на отдельных фундаментах
рядом с баком трансформатора.

Масляно-водяное охлаждение с принудительной циркуляцией масла(Ц)
принципиально устроено так же, как охлаждение с дутьем и принудительной
циркуляцией масла, но в отличие от последнего охладители в этой системе состоят из трубок, по которым циркулирует вода,
а между трубками движется масло. Температура масла на входе в маслоохладитель не должна превышать 70°С.
Чтобы предотвратить попадание воды в масляную систему трансформатора, давление масла в маслоохладителях в этом случае должно
превышать давление циркулирующей в них воды не менее чем на 0,02 МПа (2 Н/см2).
Эта система охлаждения эффективна, но имеет довольно сложное конструктивное исполнение и поэтому применяется
для мощных трансформаторов (160 MB⋅А и более).

Достоинства и недостатки масляных радиаторов

Радиатор охлаждения моторного масла не является обязательным элементов большинства автомобилей. К примеру, подобные радиаторы устанавливают на автомобили с мощным двигателем, как-то BMW 335i E92. Также в охлаждении масла нуждается практически вся сельхозтехника, грузовики и многие модели фургонов. Достоинства масляных радиаторов мы уже затронули, но давайте перечислим их все. Масляный радиатор обеспечивает:

  • Стабильность температуры смазочного материала;
  • Поддержание нормальной температуры силового агрегата;
  • Увеличение эксплуатационного ресурса моторного масла.

Запчасти на mazda 2

Подушка (опора) двигателя задняя 1.4 CD F6JA Несмотря на очевидные плюсы, масляный радиатор, как и было указано, является необязательным компонентом для большинства автомобилей. Следовательно, он налагает на водителя обязанность в своевременной диагностике и обслуживании. Вот какие недостатки масляного радиатора можно выделить:

  • Он нуждается в обслуживании, как-то чистке поверхности;
  • В масляную систему нужно заливать больше смазки – некоторый ее объем будет «забирать» радиатор;
  • Достаточно высокая цена (исключение: радиаторы от упаковщиков нижнего звена и азиатских производителей).

Как можно заметить, достоинства маслокулеров выглядят более убедительными, нежели их недостатки. По этой причине их иногда устанавливают на автомобили, штатная комплектация которых не предусматривала наличия подобных устройств. Об этом мы поговорим, а пока давайте разберемся, как можно выявить неисправность масляного радиатора.

Как понять, смешались ли моторное масло и хладагент?

Обратиться в сервисную компанию для диагностики автомобиля на вопрос протечки масла в антифриз нужно, если автомобилисту понятно по определенным признакам, что это произошло. Так, если в процессе избавления от охлаждающей жидкости в автомобиле обнаруживается довольно густая темная жидкость, частички которой на поверхности хладагента, то вероятнее всего масло попало в антифриз.

Обмакнув обычную салфетку в частицы, плавающие на поверхности антифриза, и поджигая ее, обнаружится горение салфетки. Наличие частиц сажи в моторном масле тоже говорит о протечке. Здесь возможна и другая проблема, когда частицы сажи забиваются в фильтр. Это может привести к полному отсутствию пропускания масла через фильтр и, следовательно, к поломке цилиндров.

В основе охлаждающей жидкости лежит спиртовой раствор, потому при попадании в него масла проходит определенная химическая реакция с присадками масла и антифриза. Это в последующем отражается на чистоте важных элементов как дизельного, так и бензинового двигателя.

Наиболее опасной в дизельных двигателях является искривление стенок гильзы цилиндра, приводящая к поступлению в камеру сгорания части антифриза. Как следствие, охлаждающая жидкость не будет иметь нужную плотность и двигатель остановится.

Термостат

У термостата следует проверять температуру начала открытия и ход основного клапана. Для этого термостат установите на стенде БС-106-000, опустив в бак с водой или охл. жид. Снизу в основной клапан уприте кронштейн ножки индикатора. Начальная температура жидкости в баке должна быть 73-75°С. Температура жидкости постепенно увеличивается примерно на 1°С/м при постепенном окрашивании, чтобы она во всём объёме жидкости была одинаковой. За температуру начала открытия клапана принимается та, при которой ход основного клапана составит 0,1 мм. Термостат необходимо заменять, если температура начала открытия основного клапана не находится в пределах 81+5\4°С или ход клапана менее 6 мм. Простейшая проверка термостата может быть осуществлена на ощупь непосредственно на автомобиле. После пуска холодного двигателя при исправном термостате нижний бачок радиатора должен нагреваться, когда стрелка указателя температуры жидкости находится примерно на расстоянии 3-4 мм от красной зоны шкалы, что соответствует 80-85°С.

Замена прокладки при устранении протечки

Для устранения протечки моторного масла в охлаждающую жидкость автомобиля из-за изношенной прокладки нужно поставить новую. Для процедуры замены понадобится дистиллированная вода, новая прокладка, новая охлаждающая жидкость.

Сначала следует промыть конструкцию специальной очистительной жидкостью. Для этого нужно налить в охлаждающую структуру автомобиля очистительную жидкость, включить двигатель на такое время, которое понадобится для начала работы вентилятора. Затем необходимо опустошить систему, слив из нее использованный антифриз. Антифриз сливается через отверстие, находящееся за заглушками двигателя или радиатора.

Проводится разборка маслоохладителя на составляющие элементы. При этом автолюбителю следует руководствоваться серверным описанием к транспортному средству, так как порядок разборки зависит от конкретного автомобиля. После разборки, всю систему нужно тщательно вычистить и провести замену изношенных прокладок на новые. Прокладки следует приобретать к конкретному автомобилю.

Устройство вентилятора системы охлаждения двигателя

Конструктивно вентилятор для охлаждения мотора автомобиля представляет собой простой механизм, состоящий из шкива, на котором расположены лопасти (крыльчатка). Они установлены с некоторым углом наклона по отношению к плоскости вращения, что улучшает их аэродинамические характеристики и повышает интенсивность нагнетания воздуха. Количество лопастей (от 4 и более), а также их геометрические размеры (диаметр вентилятора, частота расположения) зависят от модели автомобиля и подбираются индивидуально.

В ряде конфигураций автомобилей могут использоваться сдвоенные вентиляторы системы охлаждения двигателя, в которых предусмотрено два шкива с независимыми лопастями. Они могут приводиться в рабочий режим одновременно или по отдельности, поскольку каждый имеет свою систему подключения.


Расположение ветилятора охлаждения двигателя

При интенсивном вращении шкива поток воздуха “всасывается” снаружи при помощи лопастей. Тем самым увеличивается и объем воздуха, проходящий через радиатор, что обеспечивает его более эффективную работу и ускоряет процесс отведения тепла. Для принудительного вращения шкива (лопастей) и обеспечения необходимой скорости могут быть использованы несколько типов привода:

  • механический;
  • гидромеханический;
  • электрический.

Как работает механический привод

Самый простой тип привода вентилятора для охлаждения радиатора мотора основан на передаче вращательного движения от коленчатого вала с помощью ремня. Этот способ является полностью механическим и постоянным, обеспечивая запуск “кулера” синхронно с работой двигателя.

Несмотря на простоту конструкции, такой привод снижает полезную мощность мотора, поскольку часть энергии затрачивается на нагнетание воздуха. Помимо этого, отсутствует возможность регулировки интенсивности работы лопастей. В силу этих особенностей механический привод в современных автомобилях практически не применяется.

Особенности гидромеханического типа привода

Для более рациональной эксплуатации вентилятора системы охлаждения двигателя используется гидромеханический тип привода. Его особенность заключается в том, что лопасти соединены со шкивом посредством герметичной муфты. Она может быть двух типов:

  • вязкостная (вискомуфта);
  • гидравлическая.

Главной задачей муфты является запуск вентилятора охлаждения радиатора при увеличении нагрузки на двигатель. Когда же двигатель работает на малых оборотах, принудительного нагнетания воздуха не происходит. соединена с коленвалом мотора. Внутри нее находится силиконовая жидкость (гель), которая реагирует на температуру. При нагревании муфты гель изменяет свои свойства и происходит блокировка. В гидравлической муфте блокировка обеспечивается благодаря изменению объема масла.

Электрический и электромагнитный привод

Помимо вязкостных и гидравлических муфт в системе привода вентилятора радиатора может быть использована электромагнитная муфта. Она реагирует на температуру охлаждающей жидкости, поддерживая ее в диапазоне от 80-85°C. Электромагнитные муфты устанавливаются преимущественно на грузовом транспорте и строительной технике.


Электрический вентилятор охлаждения

Такая конструкция состоит из электромагнита, установленного на ступице вентилятора. Последняя соединена с якорем при помощи пластинчатой пружины и совершает вращательные движения. При температуре ниже 80°C якорь находится вне электромагнитной катушки и вентилятор отключен, если же температура поднимается свыше 85°C срабатывает тепловой датчик, замыкающий контакты и включающий электромагнит. Якорь втягивается внутрь катушки и вентилятор приводится в движение.

Наиболее популярным типом привода для современных автомобилей является электрический. Он предполагает установку в системе дополнительного электродвигателя. Его работа контролируется блоком управления, который фактически и запускает вентилятор, когда это необходимо. Также как и для электромагнитной муфты, режим включения и отключения определяется температурой охлаждающей жидкости, которая фиксируется термодатчиком.

Преимуществом использования электродвигателя для запуска вентилятора системы охлаждения является возможность реализации управляемого выбега вентилятора. На практике это означает, что обдув может продолжаться даже после выключения мотора автомобиля, ускоряя его охлаждение.

Естественное масляное охлаждение

Естественное масляное охлаждение применяется для трансформаторов мощностью до 7500 ква класса напряжения ПО кв включительно.

Естественное масляное охлаждение с дутьем при помощи вентиляторов предусматривается для трансформаторов мощностью 10000 ква и выше класса напряжения 35 кв и выше.

Естественное масляное охлаждение ( М) выполняется для трансформаторов мощностью до 16 000 кВ — А включительно. В таких трансформаторах тепло, выделенное в обмотках и магнитопроводе, передается окружающему маслу, которое, циркулируя по баку и радиаторным трубам, передает его окружающему воздуху.

Естественное масляное охлаждение ( М) выполняется для трансформаторов мощностью до 16000 кВ — А включительно. В таких трансформаторах тепло, выделенное в обмотках и магнитопроводе, передается окружающему маслу, которое, циркулируя по баку и радиаторным трубам, передает его окружающему воздуху.

Допустимое количество пусков электродвигателей за сутки в зависимости от кратности пускового тока и длительности пуска.

Естественное масляное охлаждение применяется, как правило, для трансформаторов мощностью до 6300 кВ — А включительно.

Естественное масляное охлаждение — сердечник с обмотками помещается в бак, заливаемый трансформаторным маслом; охлаждение обмоток и сердечника происходит путем естественной конвекции масла, поверхности бака-путем излучения и естественной конвекции воздуха; применяется для мощностей от 10 до JOOOO ква.

Естественное масляное охлаждение применяется, как правило, для трансформаторов мощностью до 6300 кВ А включительно.

Естественное масляное охлаждение ( М) выполняется для трансформаторов мощностью до 16000 кВ — А. В таких трансформаторах тепло, выделенное в обмотках и магнитопроводе, передается маслу, циркулирующему по баку и радиаторам, а затем — окружающему воздуху. При номинальной нагрузке трансформатора в соответствии с Правилами технической эксплуатации ( ПТЭ) температура масла в верхних, наиболее нагретых слоях не должна превышать 95 С.

Преобразование заданного многоступенчатого графика нагрузки в эквивалентный прямоугольный.

Трансформатор имеет естественное масляное охлаждение и работает при эквивалентной температуре воздуха 20 С. Допустима ли такая перегрузка.

Трансформаторы с естественным масляным охлаждением при очень малой мощности ( не превышающей 25 кВ — А) выпускаются с гладкими баками. Поверхность баков таких трансформаторов достаточна для отвода тепла. С ростом мощности трансформаторов появляется необходимость искусственного увеличения площади охлаждающих поверхностей. Одним из конструктивных решений является применение баков с охлаждающими трубами.

Схема естественной циркуляции масла ( система охлаждения М.

Трансформаторы с естественным масляным охлаждением ( система М) при очень малой мощности ( не превышающей 25 кВ А) выпускаются с гладкими баками. Поверхность баков таких трансформаторов достаточна для отвода тепла. С ростом мощности трансформаторов появляется необходимость искусственного увеличения площади охлаждающих поверхностей. Одним из конструктивных решений является применение баков с охлаждающими трубами.

Трансформатор с естественным масляным охлаждением состоит из магнитопровода, обмоток, размещенных на магнитопроводе и составляющих вместе с ним выемную часть, переключателя числа витков обмотки высшего напряжения, бака, в который погружена выемная часть, крышки, закрывающей кожух, вводов ( проходных изоляторов), расширителя, устанавливаемого над кожухом трансформатора.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий