Как сделать реактивный мини двигатель своими руками в домашних условиях

СНАБЖЕНИЕ РЕКАТИВНОГО ДВИГАТЕЛЯ БЕНЗИНОМ

Теоретически мною рассматривались несколько систем снабжения двигателя топливом, а именно: 1 – простейшие карбюраторы; 2 – естественное испарение бензина с развитой пористой поверхности; 3 – принудительное испарение бензина электрическим нагревателем; 4 – разбрызгивание бензина вращающимся от микромоторчика диском. Эксперименты проводились по первым трем пунктам, и ни один из них не оказался совсем уж безнадежным. Но я все же остановился на первом, так как в известных конструкциях двигателей применяется именно он. Кроме того, только этот вариант увеличивает подачу бензина, когда она нужна – при увеличении мощности и скорости модели.

Примитивных карбюраторов – два. Как я надеялся, это должно было облегчить «схватывание» двигателя после стартовой продувки одного из них. Также это должно было сделать работу двигателя более устойчивой в случае обратной вспышки в одном из карбюраторов.

Стоит отметить, что соприкосновение потока смеси с бумажными или фанерными деталями приводит к впитыванию некоторой части бензина, которая оказывается потерянной для рабочего процесса. Так как наклонные клапаны сильно отклоняют поток смеси вверх, я наклеил на верхнюю часть камеры отражатель из фольги. Это полезно и для ресурса двигателя (когда он заработает, конечно).

С этой же целью концы распылительных трубок загнуты строго горизонтально. А металлические стенки каналов карбюраторов было решено совместить со… стенками топливного бака. Таким образом, имеющая дело с бензином часть двигателя превратилась в компактный топливный модуль, собранный на пайке из белой жести. Распылительные трубки идут от дна бензобака прямо в канал карбюратора.

В известных двигателях каналы карбюратора имеют круглое сечение, что требует токарных работ. В «Саяке» каналы – прямоугольные. Более того, две из четырех стенок канала – еще и плоские. Представляете, как это упрощает технологию! Каналы имеют закраины, вставляющиеся в отверстия клапанной решетки, что фиксирует топливный модуль и уменьшает соприкосновение потока смеси с фанерой. И только верхняя часть каналов карбюраторов перед распылителями сделана из бумаги.

Наружные стенки каналов выполнены из 3-мм фанеры (можно использовать пластик). Благодаря тому, что верхние и нижние стенки каналов плоскопараллельные, наружные стенки можно двигать, изменяя сечение канала, а, следовательно, регулируя и состав смеси.

Обратный заброс некоторой части выхлопных газов через клапаны в карбюратор может привести еще и к вытеснению бензина из распылительных трубок, что дополнительно увеличивает требования к всасываемому объему. В большой авиации в таких двигателях применялись обратные клапаны в топливной системе. Но в наших микроскопических объемах они бесполезны, да и трудновоспроизводимы. Единственный выход – противопоставить давлению прорвавшихся газов… это же самое давление, но со стороны бензобака. Так в двигателе появился патрубок наддува на выходе, соединенный с верхней частью бака. Патрубок приклеивается уголками из бумаги в несколько слоев на силикатном клее.

Задержка давления на удвоенной длине двигателя приводит к тому, что импульс наддува поступает в бак не во время вспышки, а как раз тогда, когда и требуется подача топлива. Именно после этого усовершенствования топливо, наконец-то, стало поступать в достаточных количествах. Дугообразно изогнутые отрезки хорошо паяющихся металлических трубок можно приобрести в магазинах товаров для рукоделия. Для распылительных трубок используются заготовки диаметром 1,5 мм, для системы наддува – диаметром 2,5 мм. Заливной горловиной служит припаянная к отверстию в баке гайка М2,5. Бак заправляется шприцем, после чего в горловину вкручивается винт. Затем включается зажигание, к входу одного из карбюраторов приставляется резиновая груша и подается поток воздуха для запуска

Но, внимание! Не отпускайте грушу, не отведя ее от карбюратора, во избежание всасывания взрывоопасной бензовоздушной смеси

Малые ГТД области применения

Микротурбины применяют в промышленности и быту в качестве автономных источников электроэнергии. — Мощность микротурбин составляет 30-1000 кВт; — объем не превышает 4 кубических метра.

Среди преимуществ малых ГТД можно выделить: — широкий диапазон нагрузок; — низкая вибрация и уровень шума; — работа на различных видах топлива; — небольшие габариты; — низкий уровень эмиссии выхлопов.

Отрицательные моменты: — сложность электронной схемы (в стандартном варианте силовая схема выполняется с двойным энергопреобразованием); — силовая турбина с механизмом поддержания оборотов значительно повышает стоимость и усложняет производство всего агрегата.

На сегодняшний день турбогенераторы не получили такого широкого распространения в России и на постсоветском пространстве, как в странах США и Европы в виду высокой стоимости производства. Однако, по проведенным расчетам, одиночная газотурбинная автономная установка мощностью 100 кВт и КПД 30% может быть использована для энергоснабжения стандартных 80 квартир с газовыми плитами.

Коротенькое видео, использования турбовального двигателя для электрогенератора.

За счет установки абсорбционных холодильников, микротурбина может использоваться в качестве системы кондиционирования и для одновременного охлаждения значительного количества помещений.

Автомобильная промышленность

Малые ГТД продемонстрировали удовлетворительные результаты при проведении дорожных испытаний, однако стоимость автомобиля, за счет сложности элементов конструкции многократно возрастает. ГТД с мощностью 100-1200 л.с. имеют характеристики, подобные бензиновым двигателям, однако в ближайшее время не ожидается массовое производство таких авто. Для решения этих задач необходимо усовершенствовать и удешевить все составляющие части двигателя.

По иному дела обстоят в оборонной промышленности

Военные не обращают внимание на стоимость, для них важнее эксплуатационные характеристики. Военным нужна была мощная, компактная, безотказная силовая установка для танков. И в середине 60-ых годов 20 века к этой проблеме привлекли Сергея Изотова, создателя силовой установки для МИ-2 — ГТД-350

КБ Изотова начало разработку и в итоге создало ГТД-1000 для танка Т-80. Пожалуй это единственный положительный опыт использования ГТД для наземного транспорта. Недостатки использования двигателя на танке — это его прожорливость и привередливость к чистоте проходящего по рабочему тракту воздуху. Внизу представлено короткое видео работы танкового ГТД-1000

И в середине 60-ых годов 20 века к этой проблеме привлекли Сергея Изотова, создателя силовой установки для МИ-2 — ГТД-350. КБ Изотова начало разработку и в итоге создало ГТД-1000 для танка Т-80. Пожалуй это единственный положительный опыт использования ГТД для наземного транспорта. Недостатки использования двигателя на танке — это его прожорливость и привередливость к чистоте проходящего по рабочему тракту воздуху. Внизу представлено короткое видео работы танкового ГТД-1000.

https://youtube.com/watch?v=yjla0e9xTmk

Малая авиация

На сегодняшний день высокая стоимость и низкая надежность поршневых двигателей с мощностью 50-150 кВт не позволяют малой авиации России уверенно расправить крылья. Такие двигатели, как «Rotax» не сертифицированы на территории России, а двигатели «Lycoming», применяемые в сельскохозяйственной авиации имеют заведомо завышенную стоимость. Кроме того, они работают на бензине, который не производится в нашей стране, что дополнительно увеличивает стоимость эксплуатации.

Именно малая авиация, как ни одна другая отрасль нуждается в проектах малых ГТД. Развивая инфраструктуру производства малых турбин, можно с уверенностью говорить о возрождении сельскохозяйственной авиации. За рубежом производством малых ГТД занимается достаточное количество фирм. Сфера применения: частные самолеты и беспилотники. Среди моделей для легких самолетов можно выделить чешские двигателиTJ100A, TP100 и TP180, и американский TPR80.

В России со времен СССР малые и средние ГТД разрабатывались в основном для вертолетов и легких самолетов. Их ресурс составлял от 4 до 8 тыс. часов,

На сегодняшний день для нужд вертолета МИ-2 продолжают выпускаться малые ГТД завода «Климов» такие как: ГТД-350, РД-33,ТВЗ-117ВМА, ТВ-2-117А, ВК-2500ПС-03 и ТВ-7-117В.

Отличительные черты

Как уже говорилось раньше, предпринимались попытки использовать газотурбинный двигатель для автомобиля, однако дальше испытаний дело не пошло. Единственная отрасль, в которой агрегат нашёл применение – авиация.

Если сравнивать газотурбинный мотор с иными силовыми установками, то у первого изделия значение вырабатываемой мощи по отношению к массе больше. Так же плюс в используемом топливе, доведённый до мелкодисперсного состояния, ассортимент воображает, главный вид – керосин и дизель. Но возможно применение: бензина, газа, спирта, мазута, угольной пыли и т.п.

Агрегат с поршнями и газотурбинная установка, это моторы, работающие на основе тепла, преобразующие энергию, выделившуюся при горении в работу механики. Разница между устройствами заключается в течение процесса. В обоих моторах происходит забор и воздушное сдавливание, после чего подаётся порция горючего, затем субстанция горит, увеличивается и сбрасывается атмосферную среду.

В поршневых установках описанные действия происходят в одной точке – камере сгорания, при этом соблюдается очерёдность действий. Для газотурбинного двигателя характерно протекание действий в нескольких частях механизма одновременно.

Что бы понять, как работает газотурбинный двигатель, разделяют этапы протекания процессов, которые в сумме составляют преобразование топлива в работу:

Подведение горючего и образование смеси.

За счёт прохождения атмосферного воздуха через компрессорное колесо, смесь сжимается в объёме, увеличивая напор, до сорока раз. После происходит перетекание воздуха в горящий объём, куда подаётся и топливо. Перемешиваясь с воздушной массой и сгорая, смесь энергетически преобразуется.

Энергетическое рабочее преобразование.

Выделившуюся силу переформатируют в работу механики. Для этого используют специальные лопатки, которые вращаются в газовой струе, выходящей с напором.

Распределение силы.

Распределяя полученную работу, задействуют её кусок в сдавливании очередной воздушной порции, оставшаяся мощь отводится для привода механизма.

Таким образом, видно, что действие газотурбинного устройства сопровождается оборачиванием и это единственное перемещение в установке. Тогда как для других видов силовых агрегатов действию сопутствует перемещение вытеснителя. Учитывая, что габариты и масса газотурбинного агрегата меньше поршневого собрата, а полезный коэффициент и мощь выше, превосходство первого очевидно. Однако увеличенный аппетит и сложность эксплуатации нивелируют преимущества. С целью экономии горючего, установки применяют устройство обмена теплом.

Схема включения в процесс турбины:

Воздушный самодельный компрессор из автомобильного двигателя

Итак, мы решили попробовать собрать более серьезный воздушный компрессор своими руками, в основе которого будет работать автоматизированный нагнетатель. Стоит сказать, что такой самодельный полупрофессиональный компрессор для обдувки и покраски авто будет стоить дороже по материалами, поэтому стоит подумать, часто ли вы будете его использовать. Если нет, то лучше оставить первый вариант.

Материалы для автоматизированного нагнетателя

  • ресивер – подходящая емкость;
  • двигатель;
  • манометр;
  • щит для крепления деталей;
  • фильтр, который отделяет масло и влагу от воздуха;
  • бензиновый фильтр;
  • фильтр грубой очистки;
  • реле контроля давления;
  • преобразователь ржавчины;
  • дополнительные материалы и инструменты: надфиль, аптечный шприц для заправки масла, герметик, гайки, переключатель сетевого напряжения, краска по металлу, набор инструментов.

Предварительные работы

В качестве силового агрегата можно взять любой электромотор, желательно, чтобы он имел полную готовность, чтобы каждый фильтр исправно работал, реле контроля давления выдавало нужные результаты и т.д. Перед началом работы лучше всего нагнетатель хорошенько очистить при помощи антикоррозийного раствора. Если какой-либо фильтр забился – его нужно поменять. Полезной процедурой будет и замена масла. Нагнетатель (двигатель) должен иметь выход на три трубки:

  • для замены масла;
  • для входа воздуха;
  • для выхода воздуха.

Определить, где подача воздуха, а где выход можно кратковременным включением двигателя. Одна из трубок запаянная (для замены масла). Когда её будете вскрывать, проследите, чтобы опилки не попали внутрь. Нам необходим маслоотделитель, ведь часть масла может попадать в поток в воздушные потоки, которые выдает нагнетатель. Фильтр нужно накрутить на трубу подачи воздуха, для крепления лучше всего подойдут хомуты авто (не один ремонт авто не обходится без этих элементов). Что касается ресивера для компрессора авто, то им может быть баллон, к примеру, газовый или от огнетушителя. Главное, чтобы он подходил даже для самого высокого давления

Внимание! При работе с баллоном убедитесь, что он не содержит горючих веществ

Емкость необходимо тщательно промыть и очистить от ржавчины и прочих загрязнений. Реле давления тоже хорошенько нужно очистить от ржавчины. С доской и так все понятно – используем ее для щита, на котором будут размещен мотор, нагнетатель и реле давления. Все детали конструкции необходимо прочно закрепить на подставке. Лучше всего, чтобы реле с мотором было в таком же положении, что и до этого. Если вы извлекли его из какого-то устройства – повторите схему, не забыв про реле и маслоотделитель. С помощью автоуплотнителей и переходников можно легко соединить крестовину с ресивером (баллоном). Всю конструкцию желательно покрасить для предохранения от ржавчины.

Шаг 6: Изготавливаем заглушки

Для завершения работ по КС нам понадобится 2 торцевые крышки. Одна крышка будет располагаться на стороне топливного инжектора, а другая будет направлять горячие газы в турбину.

Изготовим 2 пластины того же диаметра что и КС (в моём случае 20,32 см). Просверлите 12 отверстий по периметру для болтов и выровняйте их с отверстиями на конечных кольцах.

На крышке инжектора нужно сделать только 2 отверстия. Одно будет для топливного инжектора, а другое для свечи зажигания. В проекте используется 5 форсунок ( одна в центре и 4 вокруг неё). Единственное требование – инжекторы должны располагаться таким образом, чтобы после окончательной сборки они оказались внутри рассеивателя. Для нашей конструкции – это означает, что они должны помещаться в центре 12 см круга в середине торцевой крышки. Просверлим 12 мм отверстия для монтажа форсунок. Сместимся чуть-чуть от центра, чтобы добавить отверстие для свечи зажигания. Отверстие должно быть просверлено для 14 мм х 1,25 мм нити, которая будет соответствовать свече зажигания. Конструкция на картинке будет иметь 2 свечи (одна про запас, если первая выйдет из строя).

Из крышки инжектора торчат трубы. Они изготовлены из труб диаметром 12 мм (внешний) и 9,5 мм (внутренний диаметр). Их обрезают до длины 31 мм, после чего на краях делают скосы. На обеих концах будет 3 мм резьба. Позже они будут свариваться вместе с 12 мм трубками, выступающими с каждой стороны пластины. Подача топлива будет осуществляться с одной стороны а инжекторы будут вкручены с другой.

Для того, чтобы сделать вытяжной колпак, нужно будет вырезать отверстие для «горячих газов». В моем случае, размеры повторяют размеры входного отверстия турбины. Небольшой фланец должен иметь те же размеры, что и открытая турбина, а также, плюс четыре отверстия для болтов, чтобы закрепить его на ней. Торцовый фланец турбины может быть сварен вместе из простого прямоугольного короба, который будет идти между ними.

Переходный изгиб следует сделать из листовой стали. Свариваем детали вместе. Необходимо, чтобы сварные швы шли по наружной поверхности. Это нужно для того, чтобы воздушный поток не имел никаких препятствий и не создавалась турбулентность внутри сварных швов.

Виды газотурбинных двигателей

Конструктивно газотурбинные силовые установки делят на четыре типа

Турбореактивные установки.

Двигатель этого типа используют в авиационной промышленности, когда важен показатель скорости передвижения (например, военные самолёты). Работа происходит за счет выхода газов из сопла самолёта на повышенной скорости. Газы толкают транспорт и таким образом двигают изделие вперёд.

Турбовинтовая установка.

Конструктивным отличием с предшественником считается дополнительная турбинная секция. Устройство вращает винт, забирая энергию у газов, прошедших компрессорную турбину. Визуально, механизм представлен рядом лопаток, размещают деталь в передней или задней части. Для отвода выхлопа применяют отводящие патрубки. Аппарат предназначен для установки на летательных аппаратах, используемых на малых высотах и скоростях, может оснащаться биротативным воздушным винтом.

Турбовентиляторный двигатель «Д-27»:

Турбовентиляторная установка.

Конструктивно, турбина похожа на предыдущую установку, различие во второй турбинной секции. Элемент отнимает энергию газов частично, как следствие, используются отводные выхлопные патрубки. Особенность агрегата, вентилятор активируется турбиной пониженного напора. По этой причине, второе название двигателя – «двухконтурный». Здесь внутренний контур образован воздушным потоком, идущим через агрегат, внешний контур создаёт направление, чтобы повысить эффект толчка вперёд. Последние выпуски летательных аппаратов применяют турбовентиляторные двигатели, поскольку механизмы надёжны и экономичны на больших высотах.

Турбовальная установка.

Конструктивно, установка похожа на предыдущий агрегат. Разница в том, что вал механизма приводит в действие многочисленные возможные элементы. Мотор получил распространение на вертолётах, танках, кораблях. Например, М90ФР, корабельный газотурбинный двигатель, устанавливаемый на фрегатах Российского флота. К таковым относятся: «Адмирал Горшков», «Дерзкий» и др.

Газотурбинный »:

Вспомогательный двигатель

Случается, что газотурбинная силовая установка применяется, как вспомогательное оборудование, например, автономный источник питания на борту. Простые агрегаты сжимают воздушные массы, отбираемые у турбинного компрессора, который запускает главные двигатели. Сложные установки вырабатывают электрическую энергию для нужд бортовой сети.

Принцип работы

Турбореактивный двигатель функционирует как обычная тепловая машина. Не вдаваясь в подробности, его механизм можно описать как служащий для преобразования энергии в механическую работу. Газ внутри устройства имеет энергию. Сжимаясь, рабочее тело получает ее, а при расширении происходит преобразование в полезную работу.

Энергия и последующая работа для сжатия газа всегда должна быть меньшей по сравнению с той, что необходима для расширения. В противном случае преобразования не получится. Поэтому перед расширением газ нагревают, а перед сжатием — охлаждают. Тогда в результате нагрева появится некоторый излишек энергии, которым воспользуются для получения механической работы.

Принцип работы реактивного двигателя

В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:

  • Первичное забирание воздуха;
  • Охлаждение в целом всего двигателя.

Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.

При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.

Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.

В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».

Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.

К аппаратам ВРД относятся:

  • Турбореактивные двигатели (ТРД);
  • Прямоточные воздушно-реактивные двигатели (ПВРД);
  • Пульсирующие воздушно-реактивные двигатели (ПуВРД);
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).

Снова в школу

Первое, что необходимо сделать, — начертить развертки будущих деталей. Для этого необходимо вспомнить школьную геометрию и совсем немного вузовского черчения. Сделать развертки цилиндрических труб проще простого — это прямоугольники, одна сторона которых равна длине трубы, а вторая — диаметру, умноженному на «пи». Рассчитать развертку усеченного конуса или усеченного цилиндра — чуть более сложная задача, для решения которой нам пришлось заглянуть в учебник черчения.


Сварка тонкого листового металла — тончайшая работа, особенно если вы используете ручную дуговую сварку, как мы. Возможно, для данной задачи лучше подойдет сварка неплавящимся вольфрамовым электродом в аргонной среде, но оборудование для нее редкое и требует специфических навыков.

Выбор металла — весьма деликатный вопрос. С точки зрения термостойкости для наших целей лучше всего подходит нержавейка, но для первого раза лучше использовать черную низкоуглеродистую сталь: ее проще формовать и варить. Минимальная толщина листа, способного выдержать температуру сгорания топлива, — 0,6 мм. Чем тоньше сталь, тем легче ее формовать и труднее варить. Мы выбрали лист толщиной 1 мм и, похоже, не прогадали.

Даже если ваш сварочный аппарат может работать в режиме плазменной резки, не используйте его для вырезания разверток: края обработанных таким образом деталей плохо свариваются. Ручные ножницы по металлу — тоже не лучший выбор, так как они загибают края заготовок. Идеальный инструмент — электрические ножницы, которые режут миллиметровый лист как по маслу.

Для сгибания листа в трубу есть специальный инструмент — вальцы, или листогиб. Он относится к профессиональному производственному оборудованию и поэтому вряд ли найдется у вас в гараже. Согнуть достойную трубу помогут тиски.

Процесс сварки миллиметрового металла полноразмерным сварочным аппаратом требует определенного опыта. Чуть передержав электрод на одном месте, легко прожечь в заготовке дыру. При сварке в шов могут попасть пузырьки воздуха, которые затем дадут течь. Поэтому имеет смысл шлифовать шов болгаркой до минимальной толщины, чтобы пузырьки не оставались внутри шва, а становились видимыми.

ОТ СЛОВ – К ДЕЛУ!

Работы над двигателем продолжались более года, свидетельством чему стала эта ни на что не похожая конструкция. Но начну с «телеграфного» напоминания принципов действия ПуВРД. Бензо-воздушная смесь воспламеняется искрой в рабочей камере. Продукты сгорания выбрасываются через длинную выхлопную трубу, создавая реактивную тягу. Инерция потока газа приводит к тому, что он продолжает двигаться назад по трубе и после вспышки. Это создает разрежение в рабочей камере, которое открывает клапаны. Происходит всасывание свежей порции смеси, после чего цикл повторяется. Электрическая система зажигания требуется только при запуске. В камере работающего двигателя быстро появляются раскаленные (а в нашем двигателе – и тлеющие!) части, обеспечивающие дальнейшее зажигание.

Основная часть корпуса предлагаемого двигателя изготавливается из ватмана, после чего она оклеивается в 3-4 слоя обычной газетной бумагой на огнестойком силикатном клее. Конструкция вроде кажется устрашающей с точки зрения безопасности. Однако практика показала, что прочности такого корпуса более чем достаточно, чтобы выдерживать давление вспышки. А бесконтрольное горение в рабочей камере невозможно из-за малого количества находящегося там воздуха.

Остальные части конструкции опишу в порядке уже успешно решенных технических проблем.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий