Трамблеры бесконтактной системы зажигания нового образца

Контактные системы

Самые старые и несовершенные конструкции, несмотря на это, очень много автомобилей все еще используют их. Даже в магазинах продаются контактные группы. Одно преимущество можно выделить у контактных систем – низкую стоимость. В остальном же они только недостатками обладают:

  1. Контактный прерыватель, установленный в корпусе трамблера ВАЗ-2106, коммутирует высокое напряжение. Вследствие этого часто происходит подгорание контактов, нужно иногда осуществлять чистку устройства.
  2. Этот же контактный прерыватель испытывает большие нагрузки, трение. Поэтому ресурс ограничен качеством используемого металла, временем его износа.
  3. При работе изменяется зазор между контактами, а он влияет на угол опережения зажигания – это один из важнейших параметров работы двигателя внутреннего сгорания.

Несмотря на простоту, надежность механизмов очень низкая. Система требует тщательного ухода и своевременного обслуживания.

ВВ провода

Высоковольтные провода, или, как их ещё называют, свечные, отличаются от всех остальных, установленных в автомобиле. Назначение этих проводов — передавать и выдерживать проходящее по ним напряжение к свечам зажигания и защищать от электрического заряда другие элементы транспортного средства.


Свечные провода обеспечивают соединение катушки зажигания, трамблёра и свечей

Неисправности

Появление проблем с ВВ проводами сопровождается следующими характерными признаками:

  • проблемный запуск мотора из-за недостаточного напряжения на свечах;
  • выстрелы при пуске и вибрации во время дальнейшей работы мотора;
  • нестабильная работа на холостых оборотах;
  • периодическое троение двигателя;
  • появление помех при работе магнитолы, которые меняются при изменении оборотов мотора;
  • запах озона в подкапотном пространстве.

Основными причинами, которые приводят к появлению проблем с проводами, являются износ и старение изоляции. Расположение проводов вблизи двигателя приводит к температурным перепадам, особенно в зимнее время, в результате чего изоляция постепенно трескается, внутрь попадает влага, масло, пыль и пр. При достижении трещин токопроводящей жилы, ВВ провод может быть пробит на массу, а искра на свечу попросту не дойдёт. Кроме этого, провода часто выходят из строя в местах соединения центрального проводника и контактных разъёмов на свечах либо катушке зажигания. Чтобы избежать механических повреждений, провода должны быть правильно уложены и закреплены специальными хомутами.


Одной из неисправностей высоковольтных проводов является обрыв

Как проверить

Для начала следует визуально осмотреть кабели на предмет повреждений изоляционного слоя (трещины, сколы, оплавления)

Внимание следует также уделить контактным элементам: на них не должно быть следов окисления или нагара. Проверку центральной жилы ВВ проводов можно выполнить с помощью обычного цифрового мультиметра

При диагностике выявляют обрыв проводника и измеряют сопротивление. Процедура состоит из следующих действий:

  1. Снимаем свечные провода.

    Стягиваем со свечей резиновые колпачки с проводами

  2. Выставляем на мультиметре предел измерения сопротивлений 3–10 кОм и прозваниваем последовательно провода. При обрыве токоведущей жилы сопротивление будет отсутствовать. Исправный кабель должен показать около 5 кОм.

    Исправные свечные провода должны иметь сопротивление около 5 кОм

Я проверяю провода на повреждение и пробой искры следующим образом: в тёмное время суток завожу мотор и открываю капот. Если искра пробивает на массу, то это будет отчётливо видно, особенно во влажную погоду — будет проскакивать искра. После этого без труда определяется повреждённый провод. Кроме того, однажды я столкнулся с ситуацией, когда двигатель начал троить. Я начал проверку со свечей, поскольку провода были заменены недавно, но дальнейшая диагностика привела к неисправности именно в кабеле — на одном из них не было контакта с самой клеммой, соединяющей проводник со свечой. После восстановления контакта двигатель заработал ровно.

Видео: проверка ВВ проводов

Какие поставить

При выборе и покупке высоковольтных проводов следует обращать внимание на их маркировку. Производителей рассматриваемых элементов существует немало, но предпочтение лучше отдавать следующим:

  • BERU;
  • NGK;
  • PARTS-MALL;
  • AMD;
  • Bremi;
  • Tesla Technics.


Сегодня предлагается большой выбор свечных проводов, но предпочтение лучше отдавать известным производителям

Лада 2105 › Бортжурнал › Тонкая настройка зажигания: немного об УОЗ

Итак, известно, что за УОЗ отвечают центробежный и вакуумный корректоры опережения.

Центробежный корректор состоит из 2-х грузиков и 2-х пружин. Когда ротор трамблера раскручивается, грузики под действием центробежной силы расходятся в стороны, сдвигая при этом вал с кулачками (в ксз), либо шторку (в бсз), тем самим заставляя контакты/ДХ срабатывать раньше относительно поворота ротора трамблера.

Противодействие центробежной силе составляют 2 пружинки, от которых напрямую зависит правильная работа всего зажигания.

Графически зависимость УОЗ от оборотов выглядит так:

А теперь о самых пружинах:Они разные, причем не спроста.

Вот эта пружинка отвечает за момент вступления в работу центробежного регулятора (натяжение) и за наклон прямой графика до 1200 об/мин (жесткость).Важно заметить, что эта пружина обычно не имеет свободного хода

Эта пружина имеет бОльшую жесткость по сравнению с первой

Она отвечает за точку излома в графике УОЗ (свободный ход) и наклон графика (жесткость) Важно заметить, что эта пружина должна иметь свободный ход!. А теперь, собственно, то, что заставило меня опубликовать эту запись

Один из весьма авторитетных блогеров на Youtube, в одном видео заверяет, что свободный ход пружины №2 это изъян, который приводит к нестабильно работе двигателя на малых оборотах и предлагает его устранить путем натяжки 2-й пружины.Что ж мы получаем? Наш УОЗ примет вид ровной прямой с наклоном как у эталонного графика после 1200-1300 об/мин. Другими словами это будет пологая прямая без излома. Сомневаюсь, что это позитивно отразится на динамике на низких оборотах

А теперь, собственно, то, что заставило меня опубликовать эту запись. Один из весьма авторитетных блогеров на Youtube, в одном видео заверяет, что свободный ход пружины №2 это изъян, который приводит к нестабильно работе двигателя на малых оборотах и предлагает его устранить путем натяжки 2-й пружины.Что ж мы получаем? Наш УОЗ примет вид ровной прямой с наклоном как у эталонного графика после 1200-1300 об/мин. Другими словами это будет пологая прямая без излома. Сомневаюсь, что это позитивно отразится на динамике на низких оборотах.

При этом из-за увеличеной начальной жесткости, центробежный регулятор начнет вступать в работу позже, а на максимальных оборотах распредвала (3000об/мин) он не выдаст паспортных 15.30 градусов опережения- они будут на гораздо больших оборотах.

В другом видео он предлагает заменить пружина 2 пружиной 1. Т.е. в трамблере стоит 2 вот такие пружины, при чем обе натянуты.

Получится тоже прямая без излома, нечто похожее на предыдущий случай но с меньшим углом (относительно вертикали). Иными словами получим график УОЗ как нечто среднее между предыдущим случаем и графиком как у самых первых трамблеров ВАЗ (без вакуум-корректора)

Сомневаюсь, что это хорошо, т.к. кривая с изломом все же ближе к идеальной (инжекторной).

А теперь насчет вакуумного регулятора. Вакуумный регулятор дает опережение только при работе 1-й камеры при частичной нагрузке на двигатель, т.е. нельзя просто взять и приплюсовать градусы его опережение к кривой центробежного регулятора. На больших оборотах и нагрузках он не создает опережения. На холостом ходу, кстати, тоже.

Вакуумному корректору, и всяческому его «тюнингу» я посвятил отдельную запись в БЖ.

А вот то же самое, но более обширно и на научном языке:nvtkg.narod.ru/FireNonSecrets.htm

P.S. указанные на графиках обороты- это обороты распредвала, которые в 2 раза меньше оборотов коленвала. Градусы опережения- по распредвалу, по коленвалу- в 2 раза больше.

P.Р.S. Еще раз повторю: Ну нельзя просто от фонаря натягивать 2-ю пружину или заниматься подобным рукоблудием, не понимая на что это повлияет. А то сказал какой-то дядя Вова- «опытный» моторист, что так надо сделать- сразу бегут, спотыкаясь, подгибают, меняют и т.п. а потом на волне эйфории заявляют, что машина полетела. Ну не бывает так: характеристику УОЗ, как и сам двигатель разработали далеко не самые тупые люди, и ведь она сходна с характеристикой УОЗ зарубежных моторов тех времен. Интересно, кто полезет в БМВ или Мерседес натягивать пружины по собственным ощущениям? Да врядли кто, а вот у Ваз- святое дело. И ведь же покатаются, поймут и со временем вернут обратно- если, конечно, не дуб-дубом.

источник

Как оно работает?

Несмотря на то, к какому типу относится та или иная система зажигания, все они имеют несколько общих рабочих этапов, предусматривающих накопление нужного заряда, его высоковольтное преобразование, распределение, образование на свечах искр и возгорание топливной смеси. Любой из них требует слаженной и точной работы, а значит, стоит выбирать только проверенные устройства, доказавшие свою надежность. В этом плане, наилучшим вариантом принято считать электронную систему зажигания, где всем рабочим процессом (подачей искры и ее распределением по свечам) управляет электроника.

Электронная система зажигания – это не отдельный, самостоятельный компонент, а составляющая часть системы управления мотором, которая основывается на работе датчика положения коленвала, датчика, фиксирующего частоту его вращения и датчика массового расхода воздуха. Получив от них нужную информацию, ЭБУ принимает решение касательно момента подачи искры и распределения зажигания. Естественно, в блоке управления уже прописаны определенные команды, выполняющиеся после получения и анализа данных с упомянутых датчиков.

В такой системе воспламенения топливной смеси полностью исключены механические движущиеся части, а благодаря специальным датчикам и особому блоку управления, образование и подача искры проходят намного быстрее и надежнее, нежели у аналогичных систем контактного и бесконтактного типа. Этот факт позволяет улучшить работу мотора, увеличив его мощность и снизив потребление топлива. Более того, нельзя не отметить высокую рабочую надежность устройств данного типа.

Бесконтактное зажигание отличается тем, что не зависит напрямую от размыкания контактов, а главную роль в процессе образования искры здесь выполняет транзисторный коммутатор и специальный датчик. Отсутствие прямой зависимости от качества и чистоты поверхности контактной группы гарантирует более эффективное искрообразование. Однако как и в контактном варианте системы зажигания, здесь также используется прерыватель-распределитель, отвечающий за своевременную передачу тока на свечу зажигания. Рабочий принцип бесконтактной системы предусматривает выполнение некоторых действий.

Когда коленвал двигателя приходит в движение, датчик-распределитель формирует соответствующие импульсы напряжения и направляет их на транзисторный коммутатор, задача которого – создавать импульсы тока в первичной обмотке катушки зажигания. В момент прерывания во вторичной обмотке катушки проходит индуцирование тока высокого напряжения. Он подается на центральный контакт распределителя, а оттуда, посредством проводов высокого напряжения, поступает на свечи зажигания. Последние и осуществляют воспламенение топливовоздушной смеси.

В случае увеличения оборотов коленвала, за регулировку угла опережения зажигания отвечает центробежный регулятор, а при изменении нагрузки на силовой агрегат эта задача возлагается на вакуумный регулятор опережения зажигания.

Принцип работы контактного зажигания несколько отличается от вариантов, приведенных выше. Когда контакт прерывателя пребывает в замкнутом состоянии, ток низкого напряжения проходит по первичной обмотке катушки. В процессе их размыкания, во второй катушке происходит индуцирование тока высокого напряжения, и, посредством высоковольтных проводов, он передается на крышку распределителя, после чего расходится по свечам зажигания с определенным углом опережения зажигания.

Как только обороты коленвала увеличиваются, возрастают и обороты вала прерывателя-распределителя, вследствие чего грузики центробежного регулятора начинают расходиться, перемещая подвижную пластину вместе с кулачками прерывателя. Это приводит к тому, что размыкание контактов происходит несколько раньше, из-за чего увеличивается угол опережения зажигания. С уменьшением оборотов коленвала угол опережения зажигания тоже уменьшается.

Более модернизированным типом контактной системы является ее контактно-транзисторный вариант. Он отличается наличием транзисторного коммутатора в цепи первичной обмотки катушки, управление которым выполняется посредством контактов прерывателя. За счет его использования удалось добиться снижения силы тока в цепи первичной обмотки, что положительно сказалось на длительности эксплуатации контактов прерывателя.

22.08.2019

19.10.2020

05.04.2019

29.01.2020

20.03.2020

28.02.2020

20.10.2017

08.08.2018

27.08.2020

06.04.2020

17.10.2019

28.01.2016

13.06.2019

14.05.2019

20.06.2018

18.01.2018

13.03.2018

11.07.2019

Карьера

Устройство системы зажигания ВАЗ 2106

Система зажигания (СЗ) бензинового двигателя предназначена для создания и своевременной подачи импульсного напряжения на свечи зажигания.

Состав системы зажигания

Двигатель ВАЗ 2106 оборудован системой зажигания батарейно-контактного типа.

Автомобили ВАЗ 2106 оборудованы батарейно-контактной системой зажигания

В состав системы зажигания входят:

  • аккумуляторная батарея;
  • выключатель (замок зажигания с группой контактов);
  • двухобмоточная трансформирующая катушка;
  • трамблёр (распределитель с прерывателем контактного типа и конденсатором);
  • провода высокого напряжения;
  • свечи.

Зажигание включает цепи низкого и высокого напряжения. К низковольтной цепи относятся:

  • аккумулятор;
  • выключатель;
  • первичная обмотка катушки (низковольтная);
  • прерыватель с искрогасящим конденсатором.

В цепь высокого напряжения входят:

  • вторичная обмотка катушки (высоковольтная);
  • распределитель;
  • свечи зажигания;
  • высоковольтные провода.

Назначение основных элементов системы зажигания

Каждый элемент СЗ является отдельным узлом и выполняет строго определённые функции.

Аккумуляторная батарея

Аккумулятор предназначен не только для обеспечения работы стартера, но и для питания цепи низкого напряжения при запуске силового агрегата. В процессе работы двигателя напряжение в цепь подаётся уже не с аккумулятора, а с генератора.

Аккумулятор предназначен для запуска стартёра и подачи питания в цепь низкого напряжения

Выключатель

Выключатель предназначен для замыкания (размыкания) контактов низковольтной цепи. При повороте ключа зажигания в замке на двигатель подаётся (отключается) электропитание.

Выключатель зажигания поворотом ключа замыкает (размыкает) цепь низкого напряжения

Катушка зажигания

Катушка (бобина) представляет собой повышающий двухобмоточный трансформатор. Она увеличивает напряжение бортовой сети до нескольких десятков тысяч вольт.

С помощью катушки зажигания напряжение бортовой сети увеличивается до нескольких десятков тысяч вольт

Распределитель (трамблёр)

Трамблёр используется для распределения импульсного напряжения, поступающего с высоковольтной обмотки катушки на ротор устройства, по контактам верхней крышки. Это распределение осуществляется посредством бегунка, имеющего наружный контакт и находящегося на роторе.

Трамблёр предназначен для распределения напряжения по цилиндрам двигателя

Прерыватель

Прерыватель является частью распределителя и предназначен для создания электрических импульсов в низковольтной цепи. Основу его конструкции составляют два контакта — стационарный и подвижный. Последний приводится в движение кулачком, находящимся на валу распределителя.

Основу конструкции прерывателя составляют подвижный и стационарный контакты

Конденсатор прерывателя

Конденсатор предотвращает образования искры (дуги) на контактах прерывателя, если они находятся в разомкнутом положении. Один его вывод подключается к подвижному контакту, другой — к стационарному.

Конденсатор предотвращает искрообразование между разомкнутыми контактами прерывателя

Высоковольтные провода

С помощью высоковольтных проводов напряжение поступает с выводов крышки трамблёра на свечи зажигания. Все провода имеют одинаковую конструкцию. Каждый из них состоит из токопроводящей жилы, изоляции и специальных колпачков, защищающих контактное соединение.

Высоковольтные провода передают напряжение с контактов крышки трамблёра на свечи зажигания

Свечи зажигания

Двигатель ВАЗ 2106 имеет четыре цилиндра, в каждом из которых установлено по одной свече. Основная функция свечей зажигания — создание мощной искры, способной в определённый момент воспламенить горючую смесь в цилиндре.

Свечи зажигания служат для воспламенения топливно-воздушной смеси

При повороте ключа зажигания по низковольтной цепи начинает течь ток. Он проходит через контакты прерывателя и попадает на первичную обмотку катушки, где за счёт индуктивности его сила увеличивается до определённого значения. При размыкании контактов прерывателя сила тока моментально снижается до нуля. Вследствие этого в высоковольтной обмотке возникает электродвижущая сила, увеличивающая напряжение в десятки тысяч раз. В момент подачи такого импульса ротор распределителя, двигаясь по кругу, передаёт напряжение на один из контактов крышки трамблёра, с которого напряжение через высоковольтный провод поступает на свечу.

Коротко о зажигании

Чтобы понять зачем в автомобиле бобина (это народное название), и какое участие она принимает в обеспечении движения, надо хотя бы обобщенно понять устройство систем зажигания.

Упрощенная схема работы бобины приведена ниже.

Плюсовой вывод катушки подключен к положительной клемме аккумулятора, а другим выводом она соединяется с распределителем напряжения. Такая схема подключения является классической и широко применяется на машинах семейства ВАЗ. Для полноты картины необходимо сделать ряд уточнений:

  1. Распределитель напряжения является неким диспетчером, подающим напряжение на тот цилиндр, в котором произошла фаза сжатия и должны воспламениться пары бензина.
  2. Работой катушки зажигания управляет коммутатор напряжения, его исполнение может быть механическим или электронным (бесконтактным).

Механические устройства использовались в старых автомобилях: на ВАЗ 2106 и подобных, но сейчас они практически полностью вытеснены электронными.

Как правильно выставить зажигание на ВАЗ 2101 — проверка

После выполнения всех операций, описанных выше, необходимо произвести проверку правильности настройки зажигания. Проверка выглядит следующим образом:

  1.  Заводим автомобиль и трогаемся с места.
  2.  Разгоняем автомобиль примерно до скорости 50км/ч, включаем 4-ю передачу и быстро нажимаем на педаль акселератора. После этого должна возникнуть детонация двигателя, которая должна исчезать по мере набора автомобилем скорости.

В ситуации, если детонация двигателя появилась, но по мере разгона машины не исчезла, можно придти к выводу, что установлено раннее зажигание. Если же детонация и вовсе не появилась – зажигание позднее. Решение таких проблем выглядит следующим образом:

  •  в первой ситуации необходимо в правую сторону провернуть распределитель примерно на 0,5-1 деление;
  •  во второй ситуации необходимо в левую сторону провернуть распределитель на 0,5-1 деление.

На этом вопрос как выставить зажигание на ВАЗ 21011 и прародителе всех классических моделей ВАЗ – модели 2101, можно считать полностью рассмотренным.

Общий принцип работы

Наличие контактной системы зажигания в автомобиле подразумевает, что зажигание горючего в цилиндрах осуществляется по факту появления искры от свечи зажигания.

При этом сама искра возникает при поступлении импульса высокого напряжения от катушки зажигания.

Ключевую функцию выполняет катушка зажигания, которая по принципу работы напоминает трансформатор.

Она состоит из двух обмоток (первичной и вторичной), намотанных на сердечник из металла.

Сначала напряжение подводится к первичной обмотке, после чего в катушке создается ток.

Как только происходит кратковременный разрыв первичной цепи, магнитное поле нивелируется, но во вторичной обмотке возникает высокое напряжение (около 25000 Вольт).

В этот момент на первичной обмотке также присутствует напряжение, равное 300 Вольтам.

Причина его появления — токи самоиндукции. Именно из-за появления этого тока возникает обгорание и искрение контактов прерывателя.

Из сказанного выше можно сделать вывод, что вторичное напряжение напрямую зависит от следующих аспектов:

  • Магнитного поля;
  • Уровня интенсивности падения тока в первичной обмотке.

Для роста вторичного напряжения и снижения риска обгорания контактной группы, в цепочку включается конденсатор (устанавливается параллельно). Даже при незначительном размыкании конденсатор заряжается.

Принципиальная схема контактной системы зажигания показана ниже.

Разряд емкости происходит через первичную обмотку, посредством формирования импульсного тока обратного напряжения. Благодаря этой особенности, магнитное поле исчезает, а вторичное напряжение растет.

Оптимальная емкость конденсатора для контактной системы зажигания составляет 0,17-0,35 мкФ. Для примера, в «Жигулях» отечественного производства установлен конденсатор, имеющий емкость в 0,2-0,25 мкФ (при частоте от 50 до 1000 Гц).

Если система зажигания автомобиля работает без сбоев, вторичное напряжение должно постоянно расти. Оно зависит от двух основных параметров — размера зазора между свечными электродами, а также давления в цилиндрах машины.

Для контактной системы зажигания этот параметр (вторичное напряжение) должен находиться на уровне 8-12 Вольт.

Чтобы система работала без сбоев, в момент прерывания упомянутый показатель вырастает до 16-25 кВ. Наличие подобного запаса позволяет избежать неблагоприятных последствий от тех или иных колебаний в системе зажигания.

К упомянутым выше проблемам можно отнести корректировки состава горючей смеси или изменение расстояния между электродами свечи.

К примеру, снижение уровня кислорода в топливно-горючей смеси приводит к росту напряжения до 20 кВ.

Несмотря на ряд проведенных мероприятий, полностью избежать подгорания контактной группы создателям контактной системы зажигания не удалось. Оптимальным способом снижения этого эффекта является четкое выдерживание зазора на минимальном уровне (0,3-0,4 мм).

В качестве примера можно привести отечественные машины ВАЗ, в которых величина зазора в прерывателе равна 0,35-0,45 мм, что соответствует углу в 52-58 градусов (при условии, что контактная группа находится в замкнутом состоянии).

В случае изменения этого угла корректируется и напряжение во вторичной обмотке. В итоге искры появляются не только на контактах, но и на бегунках. По этой причине уменьшается качество искры, и мотор теряет мощность.

Отдельного внимания заслуживает надежность контактной системы зажигания, которая зависит от целого ряда факторов:

  • Формы, энергии и времени появления искры;
  • Количества искр на определенной площади;
  • Вторичного напряжения (одна из наиболее важных характеристик). Чем больше этот параметр, тем меньше зависимость системы от состава горючей смеси и уровня чистоты электродов.

Как установить бесконтактное (электронное) зажигание

Установка электронного зажигания – это самый простой способ улучшить работу мотора. Замена на бесконтактную систему даёт такие преимущества:

  • Уверенный холодный пуск;
  • Стабильная работа двигателя на любых оборотах;
  • Высокая надёжность;
  • Увеличивается срок службы свечей зажигания;
  • Мощная искра;
  • Не требуется регулировка зазора и центробежного регулятора.

В состав готового набора входит трамблёр с датчиком Холла, специальная катушка зажигания и коммутатор. Высоковольтные провода возможно оставить и старые.

Электронная система зажигания включает в себя: катушку зажигания, трамблёр, коммутатор и комплект проводов

Чтобы установить бесконтактное зажигание взамен старого нам потребуется ключ на «13» и на «10», два винта для крепления коммутатора и стробоскоп для настройки угла опережения.

Порядок выполняемых работ:

  1. Подводим шкив коленвала к метке на крышке двигателя, поршень первого цилиндра должен находиться в ВМТ.
  2. Отсоединить минусовую клемму аккумулятора.
  3. Снимаем со старого трамблёра крышку и отмечаем положение бегунка относительно двигателя. Это поможет быстро установить и настроить новый трамблёр.
  4. Отсоединяем провод, идущий с катушки зажигания, откручиваем фиксатор ключом на «13» и извлекаем трамблёр из блока двигателя.
  5. Новый распределитель устанавливаем по сделанным отметкам, стараясь совместить метки на корпусе и положение бегунка. Крепление полностью не затягиваем.
  6. Заменяем катушку зажигания на новую и устанавливаем коммутатор под капотом. Электронный блок размещаем в сухом месте, подальше от нагретых деталей. Например, на крыле или моторном щите.
  7. Подключаем проводку по схеме в инструкции к БСЗ. Подсоединяем высоковольтные провода.
  8. Закрываем трамблёр крышкой и затягиваем гайку крепления. Система установлена и готова к работе. Остаётся только отрегулировать угол опережения зажигания.

Схема бесконтактного зажигания ВАЗ 2106

Важно! Системы БСЗ могут отличаться длиной вала трамблёра для разных моделей двигателей классических «Жигулей», поэтому перед покупкой стоит уточнить у продавца о взаимозаменяемости компонентов

Устройство и ремонт бесконтактного трамблёра

Устройство распределителя, действующего совместно с системой электронного зажигания, идентично конструкции механического трамблёра. Здесь также имеется пластина с подшипником, бегунок, центробежный регулятор и вакуумный корректор. Только вместо контактной группы и конденсатора установлен магнитный датчик Холла плюс металлический экран, закреплённый на валу.

В бесконтактном распределителе главную роль играет магнитный датчик, посылающий сигналы коммутатору

Как функционирует бесконтактный трамблёр:

  1. Датчик Холла и постоянный магнит расположен на подвижной площадке, между ними вращается экран с прорезями.
  2. Когда экран перекрывает поле магнита, датчик бездействует, напряжение на выводах нулевое.
  3. При повороте валика и прохождении прорези магнитное поле достигает поверхности датчика. На выходе элемента появляется напряжение, передающееся электронному блоку — коммутатору. Последний даёт сигнал катушке, вырабатывающей разряд, поступающий на бегунок трамблёра.

В электронной системе зажигания искрообразованием занимается коммутатор и катушка, трамблёр только определяет момент подачи разряда на свечи

Бесконтактный распределитель более надёжен в работе — датчик Холла и подшипник приходят в негодность гораздо реже из-за отсутствия механической нагрузки. Признак поломки измерителя — отсутствие искры и полный отказ системы зажигания. Замену произвести легко — нужно разобрать трамблёр, открутить 2 винтика крепления датчика и вытащить из паза соединительный разъем.

Магнитный датчик крепится двумя винтами к площадке подшипника

Неисправности остальных элементов трамблёра аналогичны старой контактной версии. Методы устранения неполадок подробно описываются в предыдущих разделах.

Устройство

Принцип работы системы зажигания заключается в накоплении и преобразовании катушкой зажигания низкого напряжения (12В) электрической сети автомобиля в высокое напряжение (до 30000В), распределении и передаче высокого напряжения к соответствующей свече зажигания и образовании в нужный момент искры на свече зажигания.
В работе системы зажигания можно выделить следующие этапы: накопление электрической энергии, преобразование энергии, распределение энергии по свечам зажигания, образование искры, воспламенение топливно-воздушной смеси.

Механический прерыватель осуществляет непосредственное управление процессом накопления (первичной цепью) и отвечает за замыкание/размыкание питания первичной обмотки. Контакты прерывателя можно увидеть, заглянув под крышку распределителя. Пластичная пружина подвижного контакта прижимает его к недвижимому контакту. Их размыкание выполняется только на короткий срок, а конкретно, в момент, когда набегающий кулачок валика привода оказывает давление на молоточек подвижного контакта.

К контактам подключен конденсатор, который не даёт им обгорать. Электроразряд поглощается и искрение уменьшается. Параллельно в цепи создаётся низкое напряжение обратного тока, которое положительно сказывается на исчезновении магнитного поля.

Прерыватель находится в корпусе распределителя зажигания, и это части классической системы зажигания.

Ещё один важный узел – центробежный регулятор опережения зажигания, механизм, предназначенный для автоматического изменения угла опережения зажигания в зависимости от числа оборотов коленчатого вала двигателя.

Центробежный регулятор размещён внутри корпуса прерывателя-распределителя.

Как правило, он работает совместно с вакуумным регулятором, оба являются составной частью прерывателя-распределителя. Называется он центробежным от вида силы, использующейся для реализации изменения опережения.

На приводном валу прерывателя расположена пластина, на которой размещены два грузика. Грузики свободно сидят на осях и стянуты пружинами. Причём пружины обладают разной жёсткостью, что необходимо для предотвращения резонанса. При этом, кулачок прерывателя и планка с двумя продольными прорезями надеты на верхнюю часть приводного валика. В продольные прорези планки входят штифты грузиков.

Вращение передаётся от приводного валика к кулачку через грузики, штифты и планку с прорезями. Чем быстрее вращается приводной вал, тем больше расходятся грузики, тем на бо́льший угол проворачивается кулачок по ходу вращения относительно контактной группы прерывателя. С увеличением оборотов угол опережения зажигания увеличивается. С уменьшением числа оборотов центробежная сила уменьшается, пружины стягивают грузики, кулачок поворачивается против хода его вращения, контакты прерывателя замыкаются позже и угол опережения зажигания уменьшается.

Если на двигателе применено бесконтактное электронное зажигание — тогда вместо кулачка проворачивается экран бесконтактного датчика момента искрообразования.

Если механический прерыватель оборудован транзисторным коммутатором, то, в этом случае, он управляет только им, а тот, в свою очередь, отвечает за управление процессом накопления энергии. Такая конструкция существенно превосходит аналогичные устройства без транзисторного коммутатора, так как здесь контактный прерыватель более надежный, чему способствует протекание сквозь него тока меньшей силы, а значит, пригорание контактов во время размыкания практически полностью исключается. Соответственно, конденсатор, параллельно подключенный к контактам прерывателя, тут просто не нужен, а в остальном – система полностью идентична классическому варианту. Обе системы, имеющие механический прерыватель, обладают общим названием — «контактные системы зажигания».

Системы с транзисторным коммутатором, оборудованные бесконтактным датчиком (импульсным генератором), могут быть индуктивного типа, основанными на эффекте Холла или относиться к оптическому типу. В данном случае, место механического прерывателя занимает импульсный датчик-генератор с преобразователем сигналов, который, посредством транзисторного коммутатора, осуществляет управление накопителем энергии. Как правило, датчик-генератор расположен внутри распределителя, конструкция которого ничем не отличается от конструкции аналогичной детали в контактной системе, поэтому указанный узел получил название «датчика-распределителя».

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий