Бензиновый или дизельный: чьи лошади сильнее?

Ранние разработки

В 1821 году, после открытия феномена связи электричества и магнетизма, датским химиком Эрстедом, теоремы Ампера и закона Био — Савара, английский физик Майкл Фарадей построил два аппарата, которые он назвал «электромагнитное вращение»: непрерывное круговое движение магнитной силы вокруг провода — это фактическая демонстрация первого электродвигателя.

В 1822 году Питер Барлоу построил то, что можно считать первым электродвигателем в истории: «колесо Барлоу». Это устройство представляет собой простой металлический диск, нарезанный звездой, и концы которого погружаются в чашку, содержащую ртуть, обеспечивающая текущий поток. Однако он создает только силу, способную ее поворачивать, не допуская ее практического применения.

Первый экспериментально используемый коммутатор был изобретен в 1832 году Уильямом Стерджоном. Первый двигатель постоянного тока, изготовленный с целью продажи, был изобретен Томасом Давенпортом в 1834 году и запатентован в 1837 году. Эти двигатели не испытали никакого промышленного развития из-за высокой стоимости батарей в то время.

Электродвигатель с DC

Коммутируемый аппарат постоянного тока имеет набор вращающихся обмоток, намотанных на якорь, установленный на вращающемся валу. На валу также имеется коммутатор, долговременный поворотный электрический выключатель, который периодически меняет поток тока в обмотках ротора при вращении вала. Таким образом, каждый мостовой мотор постоянного тока имеет переменный ток, проходящий через вращающиеся обмотки. Ток протекает через одну или несколько пар щеток, которые несут на коммутаторе; щеточки соединяют внешний источник электроэнергии с вращающейся арматурой.

Вращающаяся арматура состоит из одной или нескольких катушек проволоки, намотанной вокруг ламинированного ферромагнитного сердечника. Ток от щетки протекает через коммутатор и одну обмотку якоря, делая его временным магнитом (электромагнитом). Магнитное поле, создаваемое якорем, взаимодействует со стационарным магнитным полем, создаваемым либо PM, либо другой обмоткой (полевой катушкой), как часть каркаса двигателя.

Сила между двумя магнитными полями имеет тенденцию вращать вал двигателя. Коммутатор переключает питание на катушки при повороте ротора, удерживая магнитные полюса, от когда-либо полностью совпадающего с магнитными полюсами поля статора, так что ротор никогда не останавливается (как стрелка компаса), а скорее вращается пока есть питание.

Хотя большинство коммутаторов являются цилиндрическими, некоторые из них представляют собой плоские диски, состоящие из нескольких сегментов (как правило, не менее трех), установленных на изоляторе.

Большие щетки желательны для большей площади контакта щетки, для максимизации мощности двигателя, но небольшие щеточки желательны для малой массы, чтобы максимизировать скорость, с которой двигатель может работать, без чрезмерного отскока и искрения щеток. Более жесткие пружины для щеток также могут использоваться для создания щеток заданной массы на более высокой скорости, но за счет больших потерь из-за трения и износа ускоренной щетки и коммутатора. Поэтому конструкция электродвигателя постоянного тока влечет за собой компромисс между выходной мощностью, скоростью и эффективностью/износом.

Конструкция двигателей с DC:

  • Схема арматуры — обмотка, в ней переносится ток нагрузки, который может быть неподвижной или вращающейся частью двигателя или генератора.
  • Полевая схема — набор обмоток, создающих магнитное поле, так что электромагнитная индукция может существовать в электрических машинах.
  • Коммутация. Механическая техника, в которой может быть достигнута ректификация, или благодаря чему может быть получен постоянный ток.

https://youtube.com/watch?v=LSrUope34os

Существует четыре основных типов электродвигателей постоянного тока:

  1. Электродвигатель с шунтовой намоткой.
  2. Электродвигатель постоянного тока.
  3. Комбинированный двигатель.
  4. Двигатель PM.

Преимущества и недостатки

Существует ряд факторов, которые выгодно отличают дизельные двигатели:

  • экономичность. КПД в 40% (до 50% с применением турбонаддува) просто недосягаемый показатель для бензинового собрата;
  • мощность. Практически весь крутящий момент доступен на самых низких оборотах. Турбированный дизельный двигатель не имеет ярко выраженной турбоямы. Такая приёмистость позволяет получить настоящее удовольствие от вождения;
  • надежность. Пробег самых надежных дизельных двигателей доходит до 700 тыс. км. И все это без ощутимых негативных последствий. Благодаря своей безотказности, дизельные ДВС ставят на спецтехнику и грузовики;
  • экологичность. В борьбе за сохранность окружающей среды дизельный двигатель превосходит бензиновые моторы. Меньшее количество выбрасываемого СО и использование технологии рециркуляции выхлопных газов (EGR) приносят минимум вреда.

Недостатки:

  • стоимость. Комплектация, оснащённая дизельным двигателем, будет стоить на 10% больше, чем такая же модель с бензиновым агрегатом;
  • сложность и дороговизна обслуживания. Узлы ДВС выполнены из более прочных материалов. Сложность устройства двигателя и топливной аппаратуры требует качественных материалов, новейших технологий и большого профессионализма в их изготовлении;
  • плохая теплоотдача. Большой процент КПД значит то, что при сгорании топлива происходят меньшие потери энергии. Другими словами, выделяется меньше тепла. В зимнее время года эксплуатация дизельного двигателя на короткие расстояния будет негативно сказываться на его ресурсности.

Рассмотренные минусы и плюсы не всегда уравновешивают друг друга. Поэтому вопрос о том, какой из двигателей лучше, будет стоять всегда. Если вы собираетесь стать владельцем такого автомобиля, учтите все особенности его выбора. Именно ваши требования к силовой установке будут тем фактором, который решит что лучше: бензиновый или дизельный двигатель.

Скоростные характеристики

Скоростная характеристика — зависимость
мощности N, крутящего момента Mкр,
расхода топлива Gти удельного
расхода топлива geот частоты
вращения коленчатого вала двигателя.
Различают внешнюю и частичные скоростные
характеристики.

Скоростную внешнюю характеристику
получают при полном открытии дроссельной
заслонки карбюратора или при положении
рейки топливного насоса дизеля,
соответствующем номинальной мощности
(линии aна рис.14.1).
Любая характеристика, полученная при
неполном открытии регулирующего органа
двигателя, называется частичной
скоростной характеристикой (линииbна рис.14.1).

Внешняя скоростная характеристика
позволяет определить максимальные
мощностные показатели двигателя и
оценить его экономичность при полных
нагрузках. Характеристику получают в
диапазоне от минимальной устойчивой
частоты вращения до ~1.2nном, где
nном— частота вращения, указанная
заводом-изготовителем для номинальной
мощности.

Для оценки устойчивости режима двигателя
при работе по внешней характеристике
используют коэффициент приспособляемости
К, который равен отношению максимального
крутящего момента (или среднего
эффективного давления) при работе
двигателя по внешней характеристике к
крутящему моменту (или среднему
эффективному давлению), соответствующему
номинальной частоте вращения вала
двигателя.

Для транспортных карбюраторных двигателей
коэффициент приспособляемости равен
1.25 – 1.35, для транспортных дизелей
1.05-1.15, причем меньшие значения коэффициента
приспособляемости имеют двигатели с
наддувом.

Скоростной диапазон устойчивой работы
двигателя оценивается скоростным
коэффициентом Kc, равным отношению
частоты вращения, соответствующей
максимальному крутящему моменту при
работе двигателя по внешней характеристике,
к частоте вращения на номинальном
режиме. Скоростной коэффициент у
карбюраторных двигателей составляет
0.45 – 0.55, а у дизелей 0,55 – 0,70 (при наддуве
до 0.8).

С достаточной степенью точности внешние
скоростные характеристики можно
построить по результатам теплового
расчета для режима максимальной мощности
двигателя. Диапазон возможных изменений
скорости вращения лежит в интервале от
600 об/мин до 1.2nномдля карбюраторных
двигателей и от ~350 об/мин до nном для дизелей.

Зависимость мощности двигателя от
скорости его вращения можно выразить
следующим обобщенным выражением

Для карбюраторных двигателей приведенное
выражение упрощается и приобретает вид

Для дизелей с неразделенной камерой
сгорания рекомендуется зависимость

для предкамерных дизелей

и вихрекамерных

Удельный эффективный расход топлива
определяется по следующим уравнениям:

для карбюраторных двигателей

для дизелей с неразделенными камерами

На рис.14.2 в качестве примера представлены
расчетные внешние скоростные характеристики
одного из карбюраторных двигателей.

Двигатели внутреннего сгорания часто
работают при переменной частоте вращения
коленчатого вала, но при постоянном
положении органа управления, соответствующем
меньшей подаче топлива или смеси, чем
при работе по внешней характеристике.
Зависимость эффективной мощности
двигателя от частоты вращения его вала
при различных положениях органа
управления подачей топлива или смеси
называют частичными скоростными
характеристиками.

При работе по частичной скоростной
характеристике с цикловой подачей
топлива, близкой к номинальной и
соответствующей наиболее

экономичной
работе дизеля, эффективный КПД может
быть даже выше, чем при работе по внешней
скоростной характеристике.

Рис.14.2

В карбюраторных двигателях с экономайзером
в карбюраторе при работе по частичным
характеристикам, соответствующим
прикрытию дроссельной заслонки на
20-30%, эффективный КПД выше, чем при работе
двигателя по внешней характеристике.

Расчеты частичных скоростных характеристик
являются приближенными, поэтому
определяют эти характеристики путем
эксперимента.

Лошадиный момент

Для разгона машины нужна энергия. Чем больше энергии можно потратить в единицу времени, тем быстрее машина разгонится. Иными словами, речь идет о мощности. Чем выше мощность, тем быстрее машина: всё, казалось бы, просто. Но…

Материалы по теме

Не пора ли вам «капиталить» мотор: основные признаки

Но на практике картина другая. Максимальная мощность мотора, как бензинового, так и дизельного, достигается им только при полной подаче топлива — понятно, что это соответствует положению «педаль в пол». А вот основная жизнь автомобиля протекает в режимах частичной подачи топлива, при которых развиваемая мотором мощность явно ниже максимальной.

Напомним, что крутящий момент и мощность — это почти что близнецы-братья, как у Маяковского. Друг без друга они не существуют: ведь мощность — это крутящий момент, помноженный на частоту вращения коленчатого вала. И если на какой-то частоте вращения ДВС способен выдать более высокий крутящий момент, чем его конкурент, то и мощность его в этот момент также должна быть выше. Одно без другого просто немыслимо. Поэтому разговоры о том, что у кого-то при равной мощности момент на тех же оборотах выше, сразу пресекаем: это несерьезно.

Материалы по теме

Форсируем мотор Патриота: плюс полсотни лошадей!

коробках передач

Если бы крутящий момент был постоянным во всем диапазоне частот вращения коленвала, то внешняя скоростная характеристика, показывающая зависимость мощности и крутящего момента от частоты вращения, превратилась бы в прямую линию, а мощность была бы прямо пропорциональна показаниям тахометра. Тогда разницы в поведении бензинового и дизельного моторов равной мощности не было бы вообще. Однако именно своеобразность протекания момента по дизельной кривой и породила неодинаковость их поведения.

Дело в том, что в массовом сознании дизельные моторы всегда отличала их способность выдавать относительно высокие значения мощности и крутящего момента на низах. Субъективно это воспринималось так, что в этом диапазоне частот дизель откликался на правую педаль охотнее, чем бензиновый коллега. Даже атмосферные дизели за счет более высокого эффективного давления в цилиндрах могли развить более высокий момент, чем бензиновые. Однако без наддува ширина «полки» крутящего момента была при этом практически такой же, то есть практически отсутствовала. А вот с применением наддува полка сразу появилась, причем в левой части характеристики — «на низах».

Материалы по теме

Перепрошивка двигателя: что она даст и чем грозит

На всякий случай напоминаю: момент существует только там, где есть сопротивление — без него он равен нулю. Грубо говоря, мотор бульдозера готов его выдать, но только в том случае, если встретит кучу щебня перед своим отвалом. Поэтому до тех пор, пока дорога гладкая и ровная, бензиновая и дизельная машины будут примерно в равных условиях

Но как только дорога пойдет в гору или, скажем, подует встречный ветер, то машина, у которой в данном диапазоне оборотов есть запас мощности (или момента — это не важно), сможет за его счет выйти вперед

А если раскрутить бензиновый мотор до более высоких оборотов? Тогда ситуация выровняется. Мало того, поскольку диапазон частот вращения коленвала у «бензинок» заведомо шире, чем у дизелей, то и отыграться за все обиды они могут именно там, «на верхах». Дизель, быстрее достигнув пика мощности, «заткнется» — его ВСХ пойдет на спад, а вот бензиновый мотор будет продолжать раскручиваться дальше, так как пик его мощности достигается при более высоких частотах вращения.

Впрочем, на этом этапе рассуждений мы упираемся в особенности конкретных моторов. Строго говоря, бензиновый двигатель тоже может быть «низовым». И если у двух моторов, низового и верхового, заявленная максимальная мощность одинакова, то поначалу вперед вырвется именно машина с «низовым» мотором. Как справедливо указал один из наиболее грамотных форумчан, при установке на автомобиль движков от «эмочки» и Таврии, мощность которых примерно одинакова, с «эмочным» мотором разгон будет интенсивнее.

1.2. Устройство и основные параметры двигателя

Поршневой двигатель внутреннего сгорания состоит из следующих механизмов и систем:

  • кривошипно-шатунный механизм (КШМ);
  • газораспределительный механизм (ГРМ);
  • система охлаждения;
  • смазочная система;
  • система питания;
  • система зажигания (в карбюраторном двигателе);
  • система электрического пуска двигателя.

В поршневом ДВС (рис. 1) преобразование энергии происходит в замкнутом объеме, который образован цилиндром, крышкой (головкой) цилиндра и поршнем. В карбюраторном двигателе горючая смесь вводится в цилиндр через впускной клапан, смешиваясь с остатками отработавших газов — образует рабочую смесь, которая сжимается поршнем и воспламеняется. Образовавшиеся при сгорании газы перемещают поршень, который через шатун передает усилие на кривошип коленчатого вала, поворачивая его вокруг оси. Отработавшие газы вытесняются при обратном движении поршня через выпускной клапан. Таким образом, тепловая энергия преобразуется в механическую, а возвратно-поступательное движение — во вращательное как наиболее удобный для трансформации вид движения.

Рис. 1. Схема четырехтактного одноцилиндрового карбюраторного двигателя: 1 — распределительный вал; 2 — толкатель; 3 — цилиндр; 4 — поршень; 5 — штанга; 6 — впускной клапан; 7 — коромысло; 8 — свеча зажигания; 9 — выпускной клапан; 10 — поршневые кольца; 11 — шатун; 12 — коленчатый вал; 13 — поддон

При вращении коленчатого вала поршень дважды за один оборот останавливается и меняет направление движения.

Основные параметры двигателей

Верхняя мертвая точка (ВМТ) — крайнее верхнее положение поршня (рис. 2).

Нижняя мертвая точка (НМТ) — крайнее нижнее положение поршня. Радиус кривошипа — расстояние от оси коренной шейки коленчатого вала до оси его шатунной шейки.

Ход поршня S — расстояние между крайними положениями поршня, равное удвоенному радиусу кривошипа коленчатого вала. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота).

Рис. 2. Основные положения кривошипно-шатунного механизма: а — ВМТ; б — НМТ; Vc — объем камеры сгорания; Vh — рабочий объем цилиндра; D — диаметр цилиндра; S — ход поршня

Ход поршня S и диаметр D цилиндра обычно определяют размеры двигателя.

Такт — часть рабочего цикла, происходящая за один ход поршня.

Объем камеры сгорания — объем пространства над поршнем при его положении в ВМТ.

Рабочий объем цилиндра объем пространства, освобождаемого поршнем при перемещении его от ВМТ к НМТ.

Полный объем цилиндра — объем пространства над поршнем при нахождении его в НМТ. Очевидно, что полный объем цилиндра равен сумме рабочего объема цилиндра и объема камеры сгорания.

Степень сжатия ε — отношение полного объема цилиндра к объему камеры сгорания.

Индикаторная мощность Ni, мощность, развиваемая газами в цилиндре.

Эффективная (действительная) мощность Ne — мощность, развиваемая на коленчатом валу двигателя. Эффективная мощность Ne меньше индикаторной Ni, так как часть последней затрачивается на трение и на приведение в движение вспомогательных механизмов. Эта мощность называется мощностью механических потерь Nм.

Механический КПД (коэффициент полезного действия) двигателя ηм — отношение эффективной мощности к индикаторной:

Индикаторный КПД ηi, представляет собой отношение теплоты Qi эквивалентной индикаторной работе, ко всей теплоте Q, введенной в двигатель с топливом.

Эффективный КПД ηе — отношение количества теплоты Q2, превращенного в механическую работу на валу двигателя, ко всему количеству теплоты Q1, подведенному в процессе работы.

Среднее эффективное давление ре — произведение среднего индикаторного давления рi (давление, действующее на поршень в течение одного хода поршня) на механический КПД ηм.

Удельный индикаторный расход топлива qi — количество топлива, расходуемого в двигателе для получения в течение 1 ч индикаторной мощности 1 кВт.

Удельный эффективный расход топлива ge — количество топлива, которое расходуется в двигателе для получения в течение 1 ч 1 кВт эффективной мощности.

Кинетическая и потенциальная энергии

Кинетическая
энергия

механической системы — энергия
механического движения этой системы.

Сила
F, действуя на покоящееся тело и вызывая
его движение, совершает работу, а изм-е
энергии движущегося тела(dT)
возрастает на величину затраченной
работы dA.
Т . е. dA
= dТ

Используя
второй закон Ньютона(F=mdV/dt)
и ряд др-х преобразований получаем

(5)
— кинетическая энергия тела массой m,
движущееся со скоростью v.

Кинетическая
энергия зависит только от массы и
скорости тела.

В
разных инерциальных системах отсчета,
движущихся друг относительно друга,
скорость тела, а следовательно, и его
кинетическая энергия будут неодинаковы.
Т. о., кинетическая энергия зависит от
выбора системы отсчета.

Потенциальная
энергия

— механическая энергия системы тел,
определяемая их вза­имным расположением
и характером сил взаимодействия между
ними.

В
сл-е взаимодействия тел осуществл-х
посредством силовых полей(поля упругих,
гравитационных сил), работа, совершаемая
действующими силами при перемещении
тела, не зависит от траектории этого
перемещения, а зависит только от
начального и конечного положений тела.
Такие поля называются потенциальными,
а силы, действующие в них, — консервативными.
Если же работа, совершаемая силой,
зависит от траектории перемещения тела
из одной точки в другую, то такая сила
называется диссипативной(сила
трения). Тело, находясь в потенциальном
поле сил, обладает потенциальной энергией
П. Работа консервативных сил при
элементарном(бесконечно малом) изменении
кон­фигурации системы равна приращению
потенциальной энергии, взятому со знаком
минус: dA=
— dП
(6)

Работа
dA
— скалярное произведение силы F
на перемещение dr
и выражение (6) можно записать:
Fdr=
-dП
(7)

При
расчётах потенциальную энер­гию тела
в каком-то определенном положении
считают равной нулю(выбирают нулевой
уровень отсчета), а энергию тела в других
положениях отсчитывают от­носительно
нулевого уровня.

Конкретный
вид функции П зависит от характера
силового поля. Например, потенциальная
энергия тела массой т,
поднятого на высоту h
над поверхностью Земли, равна (8)

где
высота h
отсчитывается от нулевого уровня, для
которого П=0.

Т.
к. начало отсчета выбирается произвольно,
то потенциальная энергия может иметь
отрицательное значение(кинетическая
энергия всегда положительна!).

Если принять за нуль потенциальную
энергию тела, лежащего на поверхности
Земли, то потенциальная энергия тела,
находящегося на дне шахты(глубина h),
П= mgh‘.

Потенциальная
энергия системы является функцией
состояния системы. Она зависит только
от конфигурации системы и ее положения
по отношению к внешним телам.

Полная
механическая энергия системы

равна сумме кинетической и потенциальной
энергий:
E=T+П.

Стоит ли покупать

Новые дизельные автомобили – это тот вид приобретения, который будет приносить только радость. Заправляя автомобиль качественным топливом и делая ТО согласно нормативным предписаниям, вы 100% не пожалеете о покупке.

Но стоит учитывать тот факт, что дизельные авто на порядок дороже своих бензиновых аналогов. Вы сможете компенсировать эту разницу и в последующем экономить только тогда, когда будете преодолевать большой километраж. Переплачивать с целью проезжать в год до 10 тыс. км. попросту не целесообразно.

Ситуация с б/у автомобилями немного иная. Несмотря на то, что дизельные двигатели отличаются большим запасом прочности, со временем сложная топливная аппаратура требует к себе повышенного внимания. Цены на запчасти к дизельному двигателю возрастом свыше 10 лет действительно удручающие.

Стоимость ТНВД на бюджетный автомобиль Б класса возрастом 15 лет может повергнуть в шок некоторых автолюбителей. К выбору авто с пробегом свыше 150 тыс. нужно относиться очень серьезно. Перед покупкой лучше сделать комплексную диагностику в специализированном сервисе. Так как низкое качество отечественного дизтоплива очень пагубно сказывается на ресурсе дизельного двигателя.

В этом случаи решить, какому двигателю лучше отдать предпочтение, поможет репутация производителя. К примеру, модель Mercedes-Benz OM602 по праву считается одним из самых надёжных дизельных двигателей в мире. Покупка автомобиля с подобным силовым агрегатом станет выгодным вложением на долгие годы. Многие производители имеют подобные «удачные» модели силовых установок.

Крутящий момент двигателя

Стоит понимать, что мощность мотора – это энергия, которая вырабатывается двигателем. И именно эта энергия преобразуется в крутящий момент на выходном (коленчатом) валу двигателя, далее момент изменяется в трансмиссии (при помощи нужных передаточных чисел шестерен) и после передается на привода, или ведущие мосты и после на колеса.

Тронуться и поехать, вы сможете даже на маломощном двигателе (причем для этого нам не нужно много мощности), здесь работают передаточные числа, которые точно подобраны в трансмиссии вашего авто.

НО мы же не хотим ездить со скоростью 20 – 40 км/ч, нам нужно ускорение, быстрое передвижение. А для этого просто необходим достаточный крутящий момент при всех диапазонах скоростей. Это достигается – достаточной мощностью двигателя и подбором шестерен в трансмиссии и приводах, мостах (если есть).

Если вывести определение:

Крутящий момент – это сила, которая умножена на плечо ее приложения, которую может предоставить мотор машине для преодоления тех или иных сопротивлений движению. Измерения производят в ньютонах, а рычаг измеряется в метрах.

Если разобрать, просто «на пальцах формулу», то 1 Н·м – это сила с которой 0,1 кг, давят на конец рычага (это поршень) длиной в 1 метр. Как становится понятно, в двигателе роль рычага выполняет кривошип коленчатого вала, через который и производится крутящий момент. Понятно, что кривошип, длинной не 1 метр, но момент вычисляется из приложенных характеристик.

Именно от этого показателя и зависит время достижения силовым агрегатом максимальной мощности, а значит и динамики разгона авто.

Если образно утрировать — то момент, собирает все лошадиные силы в «кулак» который и раскручивает мотор, и чем больше этот кулак, тем быстрее раскручивается мотор и ускоряется автомобиль.

(adsbygoogle = window.adsbygoogle || []).push({}); Лучшие недорогие автомобили с дизельным двигателем

Дизельные моторы устанавливаются не только на грузовиках и внедорожниках. Производители оснащают ими также бюджетные легковушки. Это позволяет людям с ограниченными доходами пользоваться всеми преимуществами дизеля

Эксперты обратили внимание на несколько недорогих авто.

Kia Soul

Рейтинг: 5.0

Уже 10 лет прошло с момента появления на свет корейского автомобиля Kia Soul. За это время машина завоевала сердца автомобилистов в разных странах мира. В течение первого года выпуска модель успела завоевать престижные награды за инновационность, дизайн и безопасность. Эксперты определили несколько причин популярности авто в нашей стране. В первую очередь это хорошее качество сборки при доступной цене. Благодаря высокому клиренсу техника обладает хорошей проходимостью. Тяговитый, но экономичный, дизельный двигатель (128 л. с.) объемом 1,6 л потребляет всего 5-7 л дизтоплива.

Легковушка становится победителем нашего рейтинга. Пользователи довольны экономичным расходом, хорошей динамикой разгона, достойной шумоизоляцией, отличной управляемостью. Из минусов отмечается маленький багажник.

Достоинства

  • доступная цена;
  • качественная сборка;
  • высокий клиренс;
  • приятный интерьер.

маленький багажник.

Renault Duster

Рейтинг: 4.9

Многие жители небольших населенных пунктов, охотники и рыболовы голосуют рублем за французский автомобиль Renault Duster. Высокий клиренс в сочетании с тяговитым дизельным мотором (1,5 л) превращают бюджетный автомобиль во внедорожник, особенно если выбрать полноприводную версию. При этом эксперты отмечают скромную комплектацию. Например, версия Expression оснащена такими опциями, как аудиосистема, ABS, центральный замок с дистанционным управлением и электроподъемники в передних дверях. Но зато владельца приятно удивит расход топлива в автомобиле, для прохождения 100 км смешанных дорог потребуется около 5 л дизтоплива.

Отечественные пользователи довольны низкой ценой, экономичностью и проходимостью. Модель занимает второе место за вибрацию и сильный дым при запуске мотора.

Достоинства

  • низкая цена;
  • экономичный расход;
  • отличная проходимость;
  • стильный внешний вид.

вибрация на холостом ходу.

SsangYong Actyon

Рейтинг: 4.8

На отечественном рынке немного есть бюджетных внедорожников. Достойным конкурентом для УАЗов и Дастеров стал корейский автомобиль SsangYong Actyon. Первые поставки в Россию состоялись в 2006 г, после чего производство было налажено в России, Казахстане и Украине. Среди достоинств этого кроссовера эксперты в первую очередь упоминают дизельный мотор D20DT, который собирался по лицензии Мерседес. Обладая мощностью 141 л. с., агрегат без проблем разгоняет двухтонную машину. Просто и надежно выглядит и механическая коробка передач. Высокую проходимость автомобилю обеспечивает полный (подключаемый) привод.

Третье место в нашем рейтинге объясняется рядом недоработок, которые отметили владельцы. Это ненадежное крепление кузова к раме и недолговечность вакуумных хабов.

Достоинства

  • мощный долговечный мотор;
  • полный привод;
  • надежная коробка передач;
  • стильный дизайн.

быстрый выход из строя передних хабов.

Peugeot 308

Рейтинг: 4.7

Красота – страшная сила! Именно этим утверждением руководствовались эксперты, объясняя причины популярности Peugeot 308. Французский производитель наделил легковушку импозантной внешностью, качественно отделал салон, позаботился о шумоизоляции. К достоинствам следует отнести хорошие ходовые качества, надежные турбодизельные агрегаты (1,6 и 2,0 л). Похвалы заслужили механические коробки передач, чего не скажешь об автомате AL4. Кузов хорошо защищен от коррозии, но владельцу необходимо своевременно устранять появляющиеся сколы и царапины.

Автомобиль понравился отечественным пользователям, благодаря чему он и попал в наш рейтинг. С надежностью у 308-го Пежо не все хорошо, да и в базовой комплектации нет многих современных опций.

Достоинства

  • изящный внешний вид;
  • эффективная шумоизоляция;
  • надежные дизельные моторы;
  • долговечная механическая трансмиссия.
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий